Projektbeschreibung
Eine neue Perspektive auf Knotenhomologie-Theorien
Die Knotentheorie hat in den letzten Jahrzehnten mit der Einführung der homologischen Knoteninvarianten bedeutende Fortschritte gemacht. Diese Invarianten gehen über die niedrigdimensionale Topologie hinaus und verbinden die Knotentheorie mit Bereichen wie algebraische Geometrie, Darstellungstheorie, Floer-Theorie und Physik. Das Team des ERC-finanzierten Projekts CAPCAM verwendet Multikurven-Invarianten, um eine neue Perspektive auf Knotenhomologie-Theorien zu eröffnen. Multikurven weisen außergewöhnliche geometrische und verbindende Eigenschaften auf, wodurch sie sich gut für die Umsetzung des „Teile-und-herrsche“-Ansatzes zur Bewältigung anspruchsvoller offener Probleme eignen. Das Projektteam befasst sich mit Problemen der niedrigdimensionalen Topologie, untersucht die topologischen Eigenschaften der neuen Invarianten und wendet ihre allgemeinen Prinzipien auf andere Kontexte an.
Ziel
Knot theory has seen extraordinary developments over the past decades. The arrival of modern homological knot invariants has had far-reaching implications beyond low-dimensional topology, giving insight into old problems through deep ties between knot theory, algebraic geometry, representation theory, Floer theory, and physics.
My ERC project aims to establish a new perspective on knot homology theories using a new type of invariants, so-called multicurves. As objects of Fukaya categories of simple surfaces, these multicurve invariants make local versions of knot homology theories amenable to essentially combinatorial techniques. Thanks to their exceptional geometric and gluing properties, multicurves are ideally suited to implement the divide-and-conquer principle for attacking hard open problems. In fact, I have not only been directly involved in the definition of three of these invariants, but I have also applied them to resolve several open conjectures in the field already.
The purpose of my research programme is to investigate fundamental open problems in low-dimensional topology that require a deeper understanding of the new technology of multicurves. To this end, I will pursue the following four lines of basic research: I will investigate the topological properties of the new invariants and their relation to classical invariants. I will explore the existence of local versions of various spectral sequences that are known to relate knot homology theories. I will make the invariants more computable. Finally, I will apply the generic principles that underlie the definition of multicurves to other settings.
Wissenschaftliches Gebiet (EuroSciVoc)
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
- Naturwissenschaften Mathematik reine Mathematik Topologie Knotentheorie
- Naturwissenschaften Mathematik reine Mathematik Geometrie
Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen
Wir bitten um Entschuldigung ... während der Ausführung ist ein unerwarteter Fehler aufgetreten.
Sie müssen sich authentifizieren. Ihre Sitzung ist möglicherweise abgelaufen.
Vielen Dank für Ihr Feedback. Sie erhalten in Kürze eine E-Mail zur Übermittlungsbestätigung. Wenn Sie sich für eine Benachrichtigung über den Berichtsstatus entschieden haben, werden Sie auch im Falle einer Änderung des Berichtsstatus benachrichtigt.
Schlüsselbegriffe
Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).
Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).
Programm/Programme
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
-
HORIZON.1.1 - European Research Council (ERC)
HAUPTPROGRAMM
Alle im Rahmen dieses Programms finanzierten Projekte anzeigen
Thema/Themen
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Finanzierungsplan
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
HORIZON-ERC - HORIZON ERC Grants
Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen
Aufforderung zur Vorschlagseinreichung
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
(öffnet in neuem Fenster) ERC-2023-STG
Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigenGastgebende Einrichtung
Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.
44801 Bochum
Deutschland
Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.