Descrizione del progetto
Dati multimodali per l’apprendimento della struttura semantica senza annotazione umana
L’apprendimento multimodale prevede l’addestramento di modelli che utilizzano dati ricavati in diverse modalità, come ad esempio video che contengono componenti visive e sonore o documenti con presenza di testo e immagini. Questa tecnica utilizza dati a coppie, come quelle immagine-testo, per addestrare i modelli di apprendimento profondo, consentendo loro di apprendere rappresentazioni più solide senza la necessità di una supervisione umana. Il progetto GraViLa, finanziato dal CER, propone che i modelli multimodali possano catturare efficacemente le entità semantiche intermodali e siano particolarmente vantaggiosi per l’analisi di raccolte di modalità e argomenti interconnessi, come accade spesso nei documenti multimodali. A tal fine, il progetto apprende strutture semantiche da dati multimodali attraverso un apprendimento multimodale supervisionato autonomamente, eliminando la necessità di annotazione umana. Le informazioni generate vengono quindi rappresentate sotto forma di grafico, facilitando l’elaborazione e la comprensione di dati su larga scala.
Obiettivo
Multimodal learning focuses on training models with data in more than one modality, such as videos capturing visual and audio information or documents containing image and text. Current approaches use such data to train large-scale deep learning models without human supervision by sampling pair-wise data e.g. an image-text pair from a website and train the network e.g. to identify matching vs. not matching pairs to learn better representations.
We argue that multimodal learning can do more: by combining information from different sources, multimodal models capture cross-modal semantic entities, and as most multimodal documents are a collection of connected modalities and topics, multimodal models should allow us to capture the inherent high-level topology of such data. The goal of the following project is to learn semantic structures from multimodal data to capture long-range concepts and relations in multimodal data via multimodal and self-supervision learning without human annotation. We will represent this information in form of a graph, considering latent semantic concepts as nodes and their connectivity as edges. Based on this structure, we will extend current unimodal approaches to capture and process data from different modalities in a single structure. Finally, we will explore the challenges and opportunities of the proposed idea with respect to their impact on two main challenges in machine learning: data-efficient learning and fairness in label-free learning.
By bridging the gap between those two parallel trends, multimodal supervision and graph-based representations, we combine their strengths of generating and processing topological data, which will not only allow to build new applications and tools but also opens new ways of processing and understanding large-scale data that are out-of-reach at the moment.
Campo scientifico (EuroSciVoc)
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
- scienze naturali matematica matematica pura topologia
- scienze naturali informatica e scienze dell'informazione scienza dei dati trattamento dei dati
È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione
Siamo spiacenti… si è verificato un errore inatteso durante l’esecuzione.
È necessario essere autenticati. La sessione potrebbe essere scaduta.
Grazie per il tuo feedback. Riceverai presto un'e-mail di conferma dell'invio. Se hai scelto di ricevere una notifica sullo stato della segnalazione, sarai contattato anche quando lo stato della segnalazione cambierà.
Parole chiave
Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).
Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).
Programma(i)
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
-
HORIZON.1.1 - European Research Council (ERC)
PROGRAMMA PRINCIPALE
Vedi tutti i progetti finanziati nell’ambito di questo programma
Argomento(i)
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Meccanismo di finanziamento
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
HORIZON-ERC - HORIZON ERC Grants
Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento
Invito a presentare proposte
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
(si apre in una nuova finestra) ERC-2023-STG
Vedi tutti i progetti finanziati nell’ambito del bandoIstituzione ospitante
Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.
72074 Tuebingen
Germania
I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.