Skip to main content
European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Stable and Efficient Alkaline Water Electrolyzers With Zero Critical Raw Materials for Pure Hydrogen Production

Descripción del proyecto

Innovadora electrólisis del agua para producir hidrógeno puro

La Unión Europea se ha fijado el objetivo de instalar al menos 40 GW de electrolizadores de hidrógeno renovable de aquí a 2030 en el marco de su Estrategia para el Hidrógeno. Sin embargo, alcanzar este objetivo plantea importantes retos para la tecnología de electrólisis del agua. La actual electrólisis de agua alcalina (EAA) sin fisuras puede ser rentable y modulable, pero requiere una mayor optimización en la actividad, la estabilidad y la mezcla de gases para aumentar la eficiencia y la vida útil del sistema. El equipo del proyecto SEAL-HYDROGEN, financiado con fondos europeos, pretende crear un nuevo sistema EAA que combine las ventajas clásicas con innovaciones avanzadas. En el proyecto se propone utilizar hidróxidos dobles estratificados bidimensionales, sostenibles y rentables, en vez de catalizadores basados en metales nobles. Su objetivo es acelerar la implantación comercial de la electrólisis del agua.

Objetivo

The EU Hydrogen Strategy sets the goal of installing at least 40 GW of renewable H2 electrolysers by 2030, which imposes significant challenges for water-electrolysis technology. Although current zero-gap alkaline water electrolysis (AWE) has potential for cost-effectiveness and scalability, it needs further optimization in activity, stability, and gas crossover to increase efficiency and system lifetime.
This project will develop a new class of AWE combining proven benefits of classic systems with cutting-edge innovations in materials science, catalyst design, and process engineering. Driven by an industrial-feasibility vision, a system that is both technically advanced and economically viable for large-scale commercial deployment is pursued. The proposed innovations include highly efficient and earth-abundant two-dimensional layered double hydroxides (LDH) obtained through a starightforward synthetic route, offering a sustainable and cost-effective alternative to noble metal-based catalysts. An innovative technology for up-scaling the production of LDH layers by direct growth of catalysts in porous transport electrodes will be implemented and explored on commercial separators. The interplay between the substrate, catalyst, and separator will be thoroughly optimized through the development of triple-phase boundary electrodes (catalyst-support-ionomer) structures with improved thermo-mechanical stability. A reliable method based on Raman spectroscopy, will be developed for the precise determination of electrode stability, offering an appropriate quality control of great interest both in research and industry. The optimal design will be assembled and tested, first in single cells of 5 cm², then in 25 cm², and finally scaled to a 6-cell stack of 300 cm², to demonstrate a next generation technology with improved performance, stability and durability, aimed to accelerate the commercial uptake of water electrolysis and turn green H2 into an economically viable solution.

Coordinador

UNIVERSITAT DE VALENCIA
Aportación neta de la UEn
€ 1 006 225,00
Dirección
AVENIDA BLASCO IBANEZ 13
46010 Valencia
España

Ver en el mapa

Región
Este Comunitat Valenciana Valencia/València
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total
€ 1 372 725,00

Participantes (4)