Skip to main content
European Commission logo
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Stable and Efficient Alkaline Water Electrolyzers With Zero Critical Raw Materials for Pure Hydrogen Production

Descrizione del progetto

Un metodo di elettrolisi dell’acqua innovativo per la produzione di idrogeno puro

Nell’ambito della sua strategia per l’idrogeno, l’UE ha fissato l’obiettivo di installare almeno 40 GW di elettrolizzatori di H2 rinnovabili entro il 2030; tuttavia, il raggiungimento di questo obiettivo pone sfide significative in relazione alla tecnologia dell’elettrolisi dell’acqua. Sebbene l’attuale metodo impiegato, quello dell’elettrolisi dell’acqua alcalina a gap zero, disponga del potenziale per essere conveniente e scalabile, esso richiede un’ulteriore ottimizzazione in termini di attività, stabilità e crossover dei gas affinché sia possibile aumentare l’efficienza e la durata del sistema. Il progetto SEAL-HYDROGEN, finanziato dall’UE, si prefigge di creare un nuovo sistema di elettrolisi dell’acqua alcalina in grado di combinare i vantaggi classici con innovazioni avanzate. Il progetto propone di utilizzare doppi idrossidi stratificati bidimensionali sostenibili ed economici al posto dei catalizzatori a base di metalli nobili con l’obiettivo di accelerare la diffusione commerciale della tecnologia dell’elettrolisi dell’acqua.

Obiettivo

The EU Hydrogen Strategy sets the goal of installing at least 40 GW of renewable H2 electrolysers by 2030, which imposes significant challenges for water-electrolysis technology. Although current zero-gap alkaline water electrolysis (AWE) has potential for cost-effectiveness and scalability, it needs further optimization in activity, stability, and gas crossover to increase efficiency and system lifetime.
This project will develop a new class of AWE combining proven benefits of classic systems with cutting-edge innovations in materials science, catalyst design, and process engineering. Driven by an industrial-feasibility vision, a system that is both technically advanced and economically viable for large-scale commercial deployment is pursued. The proposed innovations include highly efficient and earth-abundant two-dimensional layered double hydroxides (LDH) obtained through a starightforward synthetic route, offering a sustainable and cost-effective alternative to noble metal-based catalysts. An innovative technology for up-scaling the production of LDH layers by direct growth of catalysts in porous transport electrodes will be implemented and explored on commercial separators. The interplay between the substrate, catalyst, and separator will be thoroughly optimized through the development of triple-phase boundary electrodes (catalyst-support-ionomer) structures with improved thermo-mechanical stability. A reliable method based on Raman spectroscopy, will be developed for the precise determination of electrode stability, offering an appropriate quality control of great interest both in research and industry. The optimal design will be assembled and tested, first in single cells of 5 cm², then in 25 cm², and finally scaled to a 6-cell stack of 300 cm², to demonstrate a next generation technology with improved performance, stability and durability, aimed to accelerate the commercial uptake of water electrolysis and turn green H2 into an economically viable solution.

Coordinatore

UNIVERSITAT DE VALENCIA
Contribution nette de l'UE
€ 1 006 225,00
Indirizzo
AVENIDA BLASCO IBANEZ 13
46010 Valencia
Spagna

Mostra sulla mappa

Regione
Este Comunitat Valenciana Valencia/València
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale
€ 1 372 725,00

Partecipanti (4)