Skip to main content
European Commission logo
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS

Federated Digital Twins for Wind-Offshore

Cel

The objective of DTWO is to develop a federated digital twin (DT) integrating existing simulation assets and real-time data to transform them into virtual power plants delivering up-to-date energy system powered by offshore wind.

The core innovation of DTWO is to build the first-of-kind functional DT that does not require users to share commercially valuable data centrally, but instead offers them a customisable platform where users can spin up bespoke DTs drawing from a range of validated models and datasets to provide better decision support for complex investments decisions.

The fast offshore wind energy (OWE) development challenges our knowledge and tools, which were developed and tested for onshore conditions, smaller wind turbines (WT) and wind farms (WF), and energy system over smaller regions. It urges us to revisit theories and improve models of the OWE production system.

DTWO engages with existing EU digital initiatives, combines advanced research institutes and most influential industry partners, to update theories and improve modeling systems, with feedback loops between virtual and real-world systems. This includes integrating DestinE, considering weather with air-sea interaction in the presence of WF wakes, implementing full-scale turbulence models suitable for WTs taller than 200 meters, for both normal and extreme weather conditions. This feeds into calculation for siting conditions and energy yield, turbine health state and reliability predictions, grid interconnectivity and energy system, for both bottom-fixed and floating WTs and WFs of both historical and future scenarios. DTWO builds a software architecture with data and tool hubs integrating modules: Earth, Wakes, Siting, Turbines and Grids). DT modules and components are tested with use cases defined by Ørsted, Simens Gamesa Renewable Energy, Enfor, Vestas and TSO.

DTWO allows coordinated assessment of energy yield, WT performances, sector-coupled energy market suitable to large pan-Europe system.

Koordynator

DANMARKS TEKNISKE UNIVERSITET
Wkład UE netto
€ 1 391 482,95
Adres
ANKER ENGELUNDS VEJ 101
2800 Kongens Lyngby
Dania

Zobacz na mapie

Region
Danmark Hovedstaden Københavns omegn
Rodzaj działalności
Higher or Secondary Education Establishments
Linki
Koszt całkowity
Brak danych

Uczestnicy (12)