Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS

Quantitative Stability and Regularity of Large Data for Conservation Laws

Projektbeschreibung

Quantifizierte Stabilität und Regelmäßigkeit bei großen Datenmengen

Obwohl Forschende hyperbolische Erhaltungssätze in einer räumlichen Dimension untersuchen und sich auf wichtige und allgegenwärtige Modelle aus der Kontinuumsphysik konzentrieren, haben neuere Arbeiten die klassische Theorie der Stabilität und Eindeutigkeit für solche Systeme auf die viel breitere Klasse potenziell großer Störungen erweitert. Eine quantifizierte Version dieser Stabilitätsresultate steht jedoch noch aus. Außerdem sind diese Stabilitätsresultate für große Datenmengen immer noch an Bedingungen geknüpft, die leichte a-priori-Annahmen bezüglich der Lösungen erfordern. Mit Unterstützung der Marie-Skłodowska-Curie-Maßnahmen lautet das Ziel des Projekts we-will-shock, die Stabilität großer Daten zu quantifizieren und a-priori-Annahmen bezüglich der Lösungen zu entfernen. Dies führt zu unbedingten, quantifizierten Stabilitätsresultaten.

Ziel

"The proposed project will focus on the well-posedness theory for hyperbolic systems of conservation laws in multiple space dimensions. The project will consider the stability and well-posedness theory for such systems, in the cases with and without source.
In his 2023 survey of the field, Dafermos writes that ""in regard to systems [of conservation laws], in one spatial dimension, the fundamental question whether the Cauchy problem in the BV setting is well-posed for initial data with large total variation remains wide open.'' Our program to study quantitative stability will allow us to consider not only large BV solutions, but also large L^2 solutions with ""infinite BV.""
Classically, the best theory of well-posedness for hyperbolic systems in one space dimension is the L^1 theory of Bressan and coworkers, which considers small-BV solutions.
Recent results of the researcher, Chen, and Vasseur go significantly beyond the classical small-BV theory, and are able to treat even large L^2 data. The theory uses the technique of a-contraction, and the key assumption is a strong trace condition, a regularity assumption strictly weaker than BV_loc.
Our first main objective in this proposal is to quantify the stability in the a-contraction theory, which hasn't been done so far. More precisely, Objective 1 (Quantitative stability): In the setting of large data, derive quantitative stability estimates between L^2 and BV solutions for a large class of systems in one space dimension.
The strong trace condition is the key boundary between general weak solutions and the solutions we can show uniqueness for. This brings us our Objective 2 (Regularity): For scalar conservation laws, possibly with nonlocal or unbounded source, under mild technical assumptions, show the existence of the strong traces.
This is open even in the one dimensional scalar case with unbounded source. Showing the existence of strong traces would be a significant step towards the program of Dafermos."

Wissenschaftliches Gebiet (EuroSciVoc)

CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.

Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen

Schlüsselbegriffe

Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).

Programm/Programme

Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.

Thema/Themen

Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.

Finanzierungsplan

Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.

HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships

Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen

Aufforderung zur Vorschlagseinreichung

Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.

(öffnet in neuem Fenster) HORIZON-MSCA-2023-PF-01

Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigen

Koordinator

ECOLE NORMALE SUPERIEURE
Netto-EU-Beitrag

Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.

€ 195 914,88
Adresse
45, RUE D'ULM
75230 Paris
Frankreich

Auf der Karte ansehen

Region
Ile-de-France Ile-de-France Paris
Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten

Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.

Keine Daten
Mein Booklet 0 0