Projektbeschreibung
Erweiterung unseres Verständnisses der Hyperbolizität in höheren Dimensionen
Hyperbolizität ist zu einem zentralen Bestandteil der modernen Mathematik geworden, durchdringt nahezu das gesamte Gebiet und nimmt sowohl in der Gruppentheorie als auch in der niedrigdimensionalen Topologie die Rolle des vorherrschenden Geometrietyps ein. Sie wird umfassend verstanden und erforscht. Bei höheren Manifestationen der Hyperbolizität und in höheren Dimensionen besteht jedoch ein erheblicher Mangel an Wissen und Verständnis, wodurch ihr potenziell kritischer Einsatz einschränkt wird. Das Team des ERC-finanzierten Projekts HigherHyper wird mithilfe umfangreicher Forschung unser Verständnis der Hyperbolizität in höheren Manifestationen und Dimensionen erweitern. Dabei werden wichtige Ansätze wie die Untersuchung hyperbolischer dreidimensionaler Mannigfaltigkeiten genutzt, um Thurstons Philosophie zu erforschen und sie an hohe Dimensionen anzupassen. Auf diese Weise werden grundlegende Fragen zur Hyperbolizität in verschiedenen Dimensionen beantwortet.
Ziel
Hyperbolicity pervades modern mathematics. It is the dominant type of geometry both in low-dimensional topology and group theory, and in such regimes it is a well-understood concept. Such a comprehensive understanding, however, does not extend to higher dimensions and other higher manifestations of hyperbolicity, and this proposal will attempt to change that by focusing on fibring, volume, isoperimetric inequalities, and the Atiyah conjecture.
One of the most pressing problems that geometric topology faces today is to devise a way of adapting Thurston's philosophy to high dimensions. In particular, it is paramount that we answer the question of whether all hyperbolic manifolds in odd dimensions virtually fibre over the circle. One of the main goals of this proposal is to prove this conjecture for manifolds with cubical fundamental groups, a crucial and rich class, and to introduce an original, robust, and flexible method of producing positive examples.
Much of the study of hyperbolic three-dimensional manifolds revolves around the concept of their volume. I will advance a natural notion of volume that covers all hyperbolic groups, whether of geometric provenance or not. This will consolidate the field, and will vastly extend the range of currently existing tools.
Homologically, hyperbolicity manifests itself as a linear isoperimetric inequality in dimension one. I plan to shed light on the deeply mysterious meaning of such an inequality in higher dimensions, weaving together multiple recent advances like theorems of Kleiner--Lang and my work with Kropholler and Nowak into a single fruitful thread.
The three most important classical open questions about hyperbolic groups are residual finiteness, soficity, and the Atiyah conjecture. I intend to prove the last one using a fundamentally new approach. In the process, fresh insights into the structure of approximate subgroups will be gained that will open new avenues of inquiry into the problem of soficity.
Wissenschaftliches Gebiet (EuroSciVoc)
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
- Naturwissenschaften Mathematik reine Mathematik Topologie
- Naturwissenschaften Mathematik reine Mathematik Geometrie
- Geisteswissenschaften Philosophie, Ethik und Religion Philosophie
Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen
Wir bitten um Entschuldigung ... während der Ausführung ist ein unerwarteter Fehler aufgetreten.
Sie müssen sich authentifizieren. Ihre Sitzung ist möglicherweise abgelaufen.
Vielen Dank für Ihr Feedback. Sie erhalten in Kürze eine E-Mail zur Übermittlungsbestätigung. Wenn Sie sich für eine Benachrichtigung über den Berichtsstatus entschieden haben, werden Sie auch im Falle einer Änderung des Berichtsstatus benachrichtigt.
Schlüsselbegriffe
Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).
Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).
Programm/Programme
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
-
HORIZON.1.1 - European Research Council (ERC)
HAUPTPROGRAMM
Alle im Rahmen dieses Programms finanzierten Projekte anzeigen
Thema/Themen
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Finanzierungsplan
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
HORIZON-ERC - HORIZON ERC Grants
Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen
Aufforderung zur Vorschlagseinreichung
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
(öffnet in neuem Fenster) ERC-2024-COG
Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigenGastgebende Einrichtung
Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.
OX1 2JD Oxford
Vereinigtes Königreich
Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.