Skip to main content
Przejdź do strony domowej Komisji Europejskiej (odnośnik otworzy się w nowym oknie)
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS

Higher Hyperbolicity

Opis projektu

Rozwój wiedzy na temat hiperboliczności w wyższych wymiarach

Hiperboliczność stała się kluczowym elementem nowoczesnej matematyki, przenikając niemal całą dziedzinę i przyjmując rolę dominującego typu geometrii zarówno w teorii grup, jak i w topologii niskowymiarowej, co było możliwe dzięki jej dogłębnemu zrozumieniu i zbadaniu. Jednak wyższe przejawy hiperboliczności i wyższe wymiary charakteryzuje istotny brak wiedzy i zrozumienia, co ogranicza ich potencjalnie zastosowania. Zespół finansowanego ze środków ERBN projektu HigherHyper poszerzy naszą wiedzę na temat hiperboliczności w wyższych przejawach i wymiarach dzięki szeroko zakrojonym badaniom. W ramach projektu badacze wykorzystają kluczowe podejścia, takie jak badanie trójwymiarowych rozmaitości hiperbolicznych, aby zbadać filozofię Thurstona i dostosować ją do wyższych wymiarów, co pozwoli na udzielenie odpowiedzi na fundamentalne pytania dotyczące hiperboliczności w różnych wymiarach.

Cel

Hyperbolicity pervades modern mathematics. It is the dominant type of geometry both in low-dimensional topology and group theory, and in such regimes it is a well-understood concept. Such a comprehensive understanding, however, does not extend to higher dimensions and other higher manifestations of hyperbolicity, and this proposal will attempt to change that by focusing on fibring, volume, isoperimetric inequalities, and the Atiyah conjecture.

One of the most pressing problems that geometric topology faces today is to devise a way of adapting Thurston's philosophy to high dimensions. In particular, it is paramount that we answer the question of whether all hyperbolic manifolds in odd dimensions virtually fibre over the circle. One of the main goals of this proposal is to prove this conjecture for manifolds with cubical fundamental groups, a crucial and rich class, and to introduce an original, robust, and flexible method of producing positive examples.

Much of the study of hyperbolic three-dimensional manifolds revolves around the concept of their volume. I will advance a natural notion of volume that covers all hyperbolic groups, whether of geometric provenance or not. This will consolidate the field, and will vastly extend the range of currently existing tools.

Homologically, hyperbolicity manifests itself as a linear isoperimetric inequality in dimension one. I plan to shed light on the deeply mysterious meaning of such an inequality in higher dimensions, weaving together multiple recent advances like theorems of Kleiner--Lang and my work with Kropholler and Nowak into a single fruitful thread.

The three most important classical open questions about hyperbolic groups are residual finiteness, soficity, and the Atiyah conjecture. I intend to prove the last one using a fundamentally new approach. In the process, fresh insights into the structure of approximate subgroups will be gained that will open new avenues of inquiry into the problem of soficity.

Dziedzina nauki (EuroSciVoc)

Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.

Aby użyć tej funkcji, musisz się zalogować lub zarejestrować

Słowa kluczowe

Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.

Program(-y)

Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.

Temat(-y)

Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.

System finansowania

Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.

HORIZON-ERC - HORIZON ERC Grants

Wyświetl wszystkie projekty finansowane w ramach tego programu finansowania

Zaproszenie do składania wniosków

Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.

(odnośnik otworzy się w nowym oknie) ERC-2024-COG

Wyświetl wszystkie projekty finansowane w ramach tego zaproszenia

Instytucja przyjmująca

THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Wkład UE netto

Kwota netto dofinansowania ze środków Unii Europejskiej. Suma środków otrzymanych przez uczestnika, pomniejszona o kwotę unijnego dofinansowania przekazanego powiązanym podmiotom zewnętrznym. Uwzględnia podział unijnego dofinansowania pomiędzy bezpośrednich beneficjentów projektu i pozostałych uczestników, w tym podmioty zewnętrzne.

€ 1 999 258,00
Adres
WELLINGTON SQUARE UNIVERSITY OFFICES
OX1 2JD Oxford
Zjednoczone Królestwo

Zobacz na mapie

Region
South East (England) Berkshire, Buckinghamshire and Oxfordshire Oxfordshire
Rodzaj działalności
Higher or Secondary Education Establishments
Linki
Koszt całkowity

Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.

€ 1 999 258,00

Beneficjenci (1)

Moja broszura 0 0