Ziel
We propose a three-way dictionary between representation theory of complex semisimple Lie groups,
equivariant topology of affine Schubert varieties and mirror symmetry for Langlands dual Hitchin systems
via the language of fixed point schemes. This unified framework will yield new insights and advances
within these fields, with applications extending to other areas of mathematics and quantum physics.
We introduce big algebras, which are commutative algebras attached to representations of complex
semisimple Lie groups. We view them as commutative avatars of the representation because they bring
together a wealth of sophisticated information, including a novel ring structure on multiplicity spaces,
the weight diagram and crystal structure.
We geometrize the study of equivariant cohomologies of various varieties with group action by
representing them as rings of functions of certain fixed point schemes of the group action. Adopting this
perspective, we propose novel scheme-theoretic counterparts to several fundamental constructions in
algebraic topology, such as equivariant integration, Hodge and Lefschetz theory. For affine Schubert
varieties, these counterparts offer an alternative topological approach to understanding big algebras.
Due to our central observation that the Hitchin integrable system on various Lagrangians can be modelled
by the spectrum of equivariant cohomology and big algebras, we propose a host of computational tests
of conjectured mirror branes of Kapustin–Witten in Langlands dual Hitchin systems.
We explore several applications, including polynomial relationships between quantum numbers in baryon
multiplets; a big algebra approach to Kashiwara’s conjecture on affine crystals; compatibility with Langlands
duality, endoscopy, transfer and character formulas in the relative Langlands program; geometrization of
various q = −1 phenomena and cyclic sieving in algebraic combinatorics.
Wissenschaftliches Gebiet (EuroSciVoc)
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
Das Projektteam hat die Klassifizierung dieses Projekts bestätigt.
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
Das Projektteam hat die Klassifizierung dieses Projekts bestätigt.
- Naturwissenschaften Mathematik angewandte Mathematik mathematische Physik
- Naturwissenschaften Mathematik reine Mathematik Topologie
- Naturwissenschaften Mathematik reine Mathematik Algebra
- Naturwissenschaften Mathematik reine Mathematik Geometrie
- Naturwissenschaften Mathematik reine Mathematik diskrete Mathematik Kombinatorik
Schlüsselbegriffe
Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).
Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).
Programm/Programme
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
-
HORIZON.1.1 - European Research Council (ERC)
HAUPTPROGRAMM
Alle im Rahmen dieses Programms finanzierten Projekte anzeigen
Thema/Themen
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Finanzierungsplan
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
HORIZON-ERC - HORIZON ERC Grants
Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen
Aufforderung zur Vorschlagseinreichung
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
(öffnet in neuem Fenster) ERC-2024-ADG
Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigenGastgebende Einrichtung
Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.
3400 KLOSTERNEUBURG
Österreich
Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.