Projektbeschreibung
Das Verhalten von Momentenpolytopen aufklären
Momentpolytope bieten eine geometrische Möglichkeit, Informationen über die Dynamik eines Systems mit Symmetrien darzustellen. Sie sind unter anderem auf den Gebieten der Darstellungstheorie und der Quantenphysik von Bedeutung. Das Ziel des innerhalb der Marie-Skłodowska-Curie-Maßnahmen unterstützten Projekts AsympTensorPolytope besteht darin, das Verhalten von Momentpolytopen von Tensorfamilien und deren Fähigkeit zu untersuchen, Grenzen für den (asymptotischen) Tensorrang und Unterrang zu beweisen. Insbesondere werden im Rahmen des Projekts die Momentenpolytope von Einheitstensoren und von Matrixmultiplikationstensoren erforscht, um zu erkunden, ob sich ihre Momentenpolytope von den generischen Polytopen ihres jeweiligen Formats unterscheiden. Die Verfahren werden auch auf andere Bereiche einschließlich bosonischer oder fermionischer Systeme, Algebren und Köcherdarstellungen anwendbar sein.
Ziel
In AsympTensorPolytope I will study the behavior of moment polytopes of families of tensors, as well as their ability to prove bounds on (asymptotic) tensor rank and subrank. I aim to determine properties of the moment polytopes of the unit tensors of varying ranks, as well as matrix multiplication tensors, in particular whether they are distinct from the generic polytopes of their respective format.
To achieve this, I will use a combination of the various different descriptions of moment polytopes, which come in representation-theoretic, symplectic-geometric, intersection-theoretic, or more combinatorial forms. In particular, I will study the behavior of moment polytopes under taking direct sums and Kronecker products of tensors, as well as recently obtained computational results.
The project has the potential of proving new bounds on the complexity of various tensors, as well as furthering our understanding of Strassen's asymptotic spectrum of tensors. The techniques here can also be extended to understand other settings, such as symmetric or antisymmetric tensors (bosonic or fermionic systems), algebras and quiver representations. As a result, AsympTensorPolytope will have an impact in other contexts such as the complexity of matrix multiplication, quantum information theory and combinatorics.
Wissenschaftliches Gebiet (EuroSciVoc)
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen
Schlüsselbegriffe
Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).
Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).
Programm/Programme
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
HAUPTPROGRAMM
Alle im Rahmen dieses Programms finanzierten Projekte anzeigen
Thema/Themen
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Finanzierungsplan
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen
Aufforderung zur Vorschlagseinreichung
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
(öffnet in neuem Fenster) HORIZON-MSCA-2024-PF-01
Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigenKoordinator
Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.
1165 KOBENHAVN
Dänemark
Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.