Obiettivo
In the past decade the theory of discrete integrable systems described by difference equations has emerged as the most prominent direction of research within the field of integrability. The study of difference equations constituting the exact analogues of integrable differential equations have fundamentally contributed to mathematics by opening new fields of research, e.g. in difference geometry and the theory of non-linear special functions.
This proposal concerns both linear difference equations that possess a class of Darboux symmetry transformations and non-linear difference equations that are compatibility conditions for a set of the linear equations. Whilst most of the activity in the field has concentrated on equations of hyperbolic type, the emphasis of the proposal lies in the study of equations of elliptic type, which forms almost unchartered territory, although importantly first paradigms in this direction has been constructed by the applicant. The structure of integrable difference equations of the latter type is expected to be richer, and thus more fundamental, than of their continuous counterparts, and this will form the principal object of investigation.
In particular, this project endeavours to find discrete (difference) integrable analogues of the equations that describe:
i) Axisymmetric, stationary, vacuum Einstein fields (Ernst equation),
ii) stationary, vacuum Einstein-Maxwell fields (Ernst-Maxwell-Weyl equations), both through the consideration of auto-Backlund and Darboux transformations.
An important problem is the question of classification of such systems. Experience with discrete systems suggests that this problem is tractable and can be formulated in a precise way. To resolve this problem the theory of reductions of discrete integrable systems will be further developed. An aim is to gain insight in integrable reductions of Einstein's equations of General Relativity, using discrete Ernst equations as toy model of discrete gravity.
Campo scientifico (EuroSciVoc)
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
- scienze naturali scienze fisiche meccanica relativistica
- scienze naturali scienze fisiche astronomia astronomia osservativa onde gravitazionali
- scienze naturali informatica e scienze dell'informazione
- scienze naturali matematica matematica pura geometria
- scienze naturali matematica matematica pura analisi matematica equazioni differenziali equazioni differenziali parziali
È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione
Siamo spiacenti… si è verificato un errore inatteso durante l’esecuzione.
È necessario essere autenticati. La sessione potrebbe essere scaduta.
Grazie per il tuo feedback. Riceverai presto un'e-mail di conferma dell'invio. Se hai scelto di ricevere una notifica sullo stato della segnalazione, sarai contattato anche quando lo stato della segnalazione cambierà.
Parole chiave
Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).
Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).
Programma(i)
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
Argomento(i)
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Invito a presentare proposte
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
FP6-2002-MOBILITY-5
Vedi altri progetti per questo bando
Meccanismo di finanziamento
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
Coordinatore
LEEDS
Regno Unito
I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.