Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS
Contenuto archiviato il 2024-05-28

Von Neumann algebras, group actions and discrete quantum groups

Obiettivo

Von Neumann algebras, and more specifically II_1 factors, arise naturally in the study of countable groups and their actions on measure spaces. A central, but extremely hard problem is the classification of these von Neumann algebras in terms of their group/action data. Breakthrough results were recently obtained by Sorin Popa. I presented a combined treatment of these in my Bourbaki lecture notes. In a joint work of Popa and myself, this gave rise to the full classification of certain generalized Bernoulli II_1 factors. In a recent article of mine, it lead for the first time to a family of II_1 factors for which the fusion algebra of finite index bimodules could be entirely computed. Popa's methods open up a wealth of research opportunities. They bring within reach the solution of several long-standing open problems, that constitute the main objectives of the first part of this research proposal: complete descriptions of the finite index subfactor structure of certain II_1 factors, constructions of II_1 factors with a unique group measure space decomposition and computations of orbit equivalence invariants for actions of the free groups. Even approaching these problems would have been completely hopeless just a few years ago. Other constructions of von Neumann algebras arise in the theory of discrete quantum groups. The first rigidity results for quantum group actions on von Neumann algebras constitute the main objective of this second part of the research proposal. Finally, we aim to deal with another connection between quantum groups and operator algebras, through the study of non-commutative random walks and their boundaries. The main originality of this research proposal lies in the interaction between two branches of mathematics: operator algebras and quantum groups. This is clear for the second part of the project and occupies a central place in the first part through subfactor theory.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Parole chiave

Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

ERC-2007-StG
Vedi altri progetti per questo bando

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

ERC-SG - ERC Starting Grant

Istituzione ospitante

KATHOLIEKE UNIVERSITEIT LEUVEN
Contributo UE
€ 500 000,00
Indirizzo
OUDE MARKT 13
3000 LEUVEN
Belgio

Mostra sulla mappa

Regione
Vlaams Gewest Prov. Vlaams-Brabant Arr. Leuven
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

Nessun dato

Beneficiari (1)

Il mio fascicolo 0 0