Skip to main content
Przejdź do strony domowej Komisji Europejskiej (odnośnik otworzy się w nowym oknie)
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS
Zawartość zarchiwizowana w dniu 2024-05-28

Von Neumann algebras, group actions and discrete quantum groups

Cel

Von Neumann algebras, and more specifically II_1 factors, arise naturally in the study of countable groups and their actions on measure spaces. A central, but extremely hard problem is the classification of these von Neumann algebras in terms of their group/action data. Breakthrough results were recently obtained by Sorin Popa. I presented a combined treatment of these in my Bourbaki lecture notes. In a joint work of Popa and myself, this gave rise to the full classification of certain generalized Bernoulli II_1 factors. In a recent article of mine, it lead for the first time to a family of II_1 factors for which the fusion algebra of finite index bimodules could be entirely computed. Popa's methods open up a wealth of research opportunities. They bring within reach the solution of several long-standing open problems, that constitute the main objectives of the first part of this research proposal: complete descriptions of the finite index subfactor structure of certain II_1 factors, constructions of II_1 factors with a unique group measure space decomposition and computations of orbit equivalence invariants for actions of the free groups. Even approaching these problems would have been completely hopeless just a few years ago. Other constructions of von Neumann algebras arise in the theory of discrete quantum groups. The first rigidity results for quantum group actions on von Neumann algebras constitute the main objective of this second part of the research proposal. Finally, we aim to deal with another connection between quantum groups and operator algebras, through the study of non-commutative random walks and their boundaries. The main originality of this research proposal lies in the interaction between two branches of mathematics: operator algebras and quantum groups. This is clear for the second part of the project and occupies a central place in the first part through subfactor theory.

Dziedzina nauki (EuroSciVoc)

Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.

Aby użyć tej funkcji, musisz się zalogować lub zarejestrować

Słowa kluczowe

Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.

Program(-y)

Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.

Temat(-y)

Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.

Zaproszenie do składania wniosków

Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.

ERC-2007-StG
Zobacz inne projekty w ramach tego zaproszenia

System finansowania

Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.

ERC-SG - ERC Starting Grant

Instytucja przyjmująca

KATHOLIEKE UNIVERSITEIT LEUVEN
Wkład UE
€ 500 000,00
Koszt całkowity

Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.

Brak danych

Beneficjenci (1)

Moja broszura 0 0