Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS
Contenuto archiviato il 2024-06-18

Machine Learning Methods for Complex Outputs and Their Application to Natural Language Processing and Computational Biology

Obiettivo

In this project, we are interested in developing machine learning methods for complex inference problems that occur frequently in real world applications. Such problems are ubiquitous in many fields, ranging from natural language processing to bioinformatics, from computer vision to information retrieval. Examples include automatic translation of documents across languages, motion tracking of individuals in video sequences and identifying 3D structure of proteins. The predominant approach for such problems is to define simpler subtasks, to solve these subtasks in a cascaded manner and to use the output of the subtasks as input for the target task. This approach suffers from error propagation along the cascaded processes. Moreover, it does not take the correlation among the tasks into account, which might be a valuable source to improve the performance of each task. We propose a principled machine learning method for complex inference problems which overcomes the limitations of the cascaded approach and takes a unified approach in modeling the target task and the subtasks. Based on the assumption that the correlated tasks on an input space should have similar smoothness properties, we propose a novel and efficient learning method that performs optimization of the multiple tasks respecting the proposed model. We propose applying this method to various applications in natural language processing and computational biology. This project has the potential to contribute towards technological advances in a large spectrum of applications.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Parole chiave

Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

FP7-PEOPLE-2007-2-1-IEF
Vedi altri progetti per questo bando

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

MC-IEF - Intra-European Fellowships (IEF)

Coordinatore

MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Contributo UE
€ 153 931,96
Indirizzo
HOFGARTENSTRASSE 8
80539 Munchen
Germania

Mostra sulla mappa

Regione
Bayern Oberbayern München, Kreisfreie Stadt
Tipo di attività
Research Organisations
Collegamenti
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

Nessun dato
Il mio fascicolo 0 0