Skip to main content
European Commission logo
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS
Zawartość zarchiwizowana w dniu 2024-06-18

Numerical Design of Self Assembly of Complex Colloidal Structures

Cel

I propose to use computer simulations to predict the thermodynamic stability and kinetics of formation of three-dimensional structures of DNA-linked colloids. I then aim to go beyond simple binary structures and use simulation to explore novel strategies to build multi-component three-dimensional colloidal structures. At present, the complexity of self-assembled colloidal crystals is limited: ordered structures with more than two distinct components are rare. To make more complex structures, particles should bind selectively to their designated neighbours. This may be achieved by coating colloids with single-stranded DNA that hybridises selectively with the complementary sequence on another colloid. However, there are many practical obstacles to go from there to the self assembly of multi-component structures. In order to make progress, we need to understand the factors that determine the thermodynamic stability and, even more importantly, the kinetics of formation of complex structures. Such a numerical study will require a wide range of numerical techniques, many of which do not yet exist. As I have played a key role in the development of the numerical methods to study both the stability and the kinetics of formation of simple colloidal crystals, I am well positioned to make a breakthrough that should have important implications for experimental work in this field. My research will focus on DNA-linked colloidal systems, as this is an active area of experimental research. However, I stress that many of the techniques that I aim to develop are general. During the project, I aim to study the factors that influence the equilibrium phase diagram and the kinetics of passive and active self-assembly of (multi-component) DNA-colloid systems During the project, I aim to study the factors that influence the equilibrium phase diagram and the kinetics of passive and active self-assembly of (multi-component) DNA-colloid systems

Zaproszenie do składania wniosków

ERC-2008-AdG
Zobacz inne projekty w ramach tego zaproszenia

System finansowania

ERC-AG - ERC Advanced Grant

Instytucja przyjmująca

THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Wkład UE
€ 1 863 234,00
Adres
TRINITY LANE THE OLD SCHOOLS
CB2 1TN Cambridge
Zjednoczone Królestwo

Zobacz na mapie

Region
East of England East Anglia Cambridgeshire CC
Rodzaj działalności
Higher or Secondary Education Establishments
Kierownik naukowy
Daniel Frenkel (Prof.)
Kontakt administracyjny
Renata Schaeffer (Ms.)
Linki
Koszt całkowity
Brak danych

Beneficjenci (1)