European Commission logo
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS

New materials for hydrogen powered mobile applications

Cel

Emission-free energy generation in mobile applications is one of the major challenges to science to reduce global warming. A particularly promising approach is the electrochemical oxidation of hydrogen in fuel cells. Two challenging questions have to be solved to achieve this goal: Hydrogen has to be stored at reasonable volumetric and gravimetric storage capacities in materials which allow efficient, energy-neutral loading and unloading. The released hydrogen must be oxidized electrochemically to produce electric power and water, the only by-product of this process. We will investigate various strategies to store hydrogen in nanoporous materials and by chemisorption in various hydrides. Special emphasis is given to the mechanism of adsorption, the thermodynamics of the ad- and desorption process, tuning of the materials etc. For studies on chemisorption, materials shall be searched with a suitable energy balance between hydride and dehydrogenated species. The reaction mechanisms will be studied in detail and tuning of reaction barriers by advanced catalysts shall be investigated. The studies include various known and advanced materials such as carbon nanostructures, metal organic framework materials (MOFs), covalent organic framework materials (COFs), boron nitrides, clathrate hydrates and metal clusters. While present fuel cell technologies are more advanced than hydrogen storage devices, there is still room for significant improvements. We will investigate new proton conducting materials for high- and low-temperature fuel cells, based on perovskites and new inorganic nanomaterials like imogolite derivatives (HT) and organic substances (LT). Investigations will include a wide range of theoretical approaches, including ab initio quantum chemistry, density-functional theory, quantum-liquid density functional theory for hydrogen, molecular dynamics and Grand-Canonical Monte-Carlo simulations

Zaproszenie do składania wniosków

FP7-NMP-2008-EU-India-2
Zobacz inne projekty w ramach tego zaproszenia

Koordynator

CONSTRUCTOR UNIVERSITY BREMEN GGMBH
Wkład UE
€ 288 900,00
Adres
CAMPUS RING 1
28725 Bremen
Niemcy

Zobacz na mapie

Region
Bremen Bremen Bremen, Kreisfreie Stadt
Rodzaj działalności
Higher or Secondary Education Establishments
Kontakt administracyjny
Ronald Kieschnick
Linki
Koszt całkowity
Brak danych

Uczestnicy (3)