Obiettivo
Predicting volatility is of great importance in pricing financial derivatives, selecting portfolios, measuring and managing investment risk more accurately. Since 1980 volatility forecasting is based on day by day datasets. However, the last decade, the use of ultra-high frequency datasets provided more accurate volatility forecasts. In the case where we are interested in evaluating a method’s forecasting ability, a loss function, which takes into consideration the utility of the forecasts is mainly constructed. Although utility functions are measures of accuracy, which are constructed based upon the goals of their particular application, in the majority of the cases, their statistical properties are unknown. The superiority of a utility function against others must be judged by a statistical-theoretical ground and mot just from its empirical motivation. Even though we cannot investigate the statistical properties of a loss function, we are capable to use it for measuring whether two forecasts have statistically equal forecasting accuracy. The majority of the hypotheses tests, which exist in the forecasting literature, compare the ability of two models in producing accurate predictions. However, the simultaneous comparison of the available forecasts provides a more robust comparison of the competing methods of forecasting. The main research objective is the development of a volatility forecasting evaluation framework which would combine the state-of-the-art findings in financial and statistical literature. We seek to combine a) the recent findings in ultra-high frequency modelling, with b) the techniques of simultaneous multiple model comparison and c) the construction of a utility function (or loss function) whose statistical properties would be known.
Parole chiave
Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).
Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).
Programma(i)
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
Argomento(i)
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Invito a presentare proposte
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
FP7-PEOPLE-IEF-2008
Vedi altri progetti per questo bando
Meccanismo di finanziamento
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
Coordinatore
PO1 2UP Portsmouth
Regno Unito
I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.