Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS
Contenuto archiviato il 2024-05-30

Hyperbolic Systems of Conservation Laws: singular limits, properties of solutions and control problems

Obiettivo

The research program concerns various theoretic aspects of hyperbolic conservation laws. In first place we plan to study the existence and uniqueness of solutions to systems of equations of mathematical physics with physic viscosity. This is one of the main open problems within the theory of conservation laws in one space dimension, which cannot be tackled relying on the techniques developed in the case where the viscosity matrix is the identity. Furthermore, this represents a first step toward the analysis of more complex relaxation and kinetic models with a finite number of velocities as for Broadwell equation, or with a continuous distribution of velocities as for Boltzmann equation. A second research topic concerns the study of conservation laws with large data. Even in this case the basic model is provided by fluidodynamic equations. We wish to extend the results of existence, uniqueness and continuous dependence of solutions to the case of large (in BV or in L^infty) data, at least for the simplest systems of mathematical physics such as the isentropic gas dynamics. A third research topic that we wish to pursue concerns the analysis of fine properties of solutions to conservation laws. Many of such properties depend on the existence of one or more entropies of the system. In particular, we have in mind to study the regularity and the concentration of the dissipativity measure for an entropic solution of a system of conservation laws. Finally, we wish to continue the study of hyperbolic equations from the control theory point of view along two directions: (i) the analysis of controllability and asymptotic stabilizability properties; (ii) the study of optimal control problems related to hyperbolic systems.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Parole chiave

Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

ERC-2009-StG
Vedi altri progetti per questo bando

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

ERC-SG - ERC Starting Grant

Istituzione ospitante

SCUOLA INTERNAZIONALE SUPERIORE DI STUDI AVANZATI DI TRIESTE
Contributo UE
€ 362 000,00
Indirizzo
VIA BONOMEA 265
34136 Trieste
Italia

Mostra sulla mappa

Regione
Nord-Est Friuli-Venezia Giulia Trieste
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

Nessun dato

Beneficiari (2)

Il mio fascicolo 0 0