Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS
Inhalt archiviert am 2024-05-30

Periods of modular forms

Ziel

This proposal belongs to the area of modular forms and L-functions, and it consists of both algebraic and analytic problems related to the structure of the space of modular forms, of integral and half integral weight. The methods I use involve the theory of periods of modular forms, developed in the 1970s by Eichler-Shimura-Manin, and in the 1980s by Kohnen and Zagier. Part of the proposal is concerned with decompositions of modular forms of both integral and half integral weight, in terms of explicit generators with rational periods, or with rational Fourier coefficients. The coefficients of these decompositions can be explicitly expressed in terms of periods. Our results would contribute to the theory of periods of modular forms, an area of intense research due to connections with arithmetic algebraic geometry. Among the results we plan to obtain in this direction is a formula--in terms of periods--of the Petersson inner product between a Hecke eigenform for a congruence subgroup of SL(2,Z), and a Rankin-Cohen bracket of two Eisenstein series attached to arbitrary cusps of the congruence subgroup. This result would generalize to Rankin-Cohen brackets the classical Rankin-Selberg identity, in which the Rankin-Cohen bracket is simply a product of Eisenstein series. We plan to use adelic automorphic forms to prove the most general statement. This is a joint project with Ramin Takloo-Bighash In addition to these algebraic questions, I plan to study the rate of growth of certain arithmetic functions closely related to Fourier coefficients of Rankin-Cohen brackets of half integral weight. This has applications to proving bounds towards the Ramanujan conjecture for the coefficients of half integral weight forms, by a method different from the usual method of estimating Kloosterman sums appearing as coefficients of Poincare series.

Wissenschaftliches Gebiet (EuroSciVoc)

CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.

Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen

Programm/Programme

Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.

Thema/Themen

Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.

Aufforderung zur Vorschlagseinreichung

Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.

FP7-PEOPLE-2009-RG
Andere Projekte für diesen Aufruf anzeigen

Finanzierungsplan

Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.

MC-IRG - International Re-integration Grants (IRG)

Koordinator

INSTITUTUL DE MATEMATICA AL ACADEMI EI ROMANE INSTITUTE OF MATHEMATICS SIMION STOILOW OF THE ROMANIAN ACA DEMY
EU-Beitrag
€ 100 000,00
Adresse
Calea Grivitei 21
010702 BUCUREST
Rumänien

Auf der Karte ansehen

Region
Macroregiunea Trei Bucureşti-Ilfov Bucureşti
Aktivitätstyp
Research Organisations
Links
Gesamtkosten

Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.

Keine Daten
Mein Booklet 0 0