Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS
Contenuto archiviato il 2024-06-18

Optimal Control of Eye Movements

Obiettivo

Optimal performance in a noisy and ambiguous environment requires that the human brain performs computations that are adapted to these conditions. Cognitive neuroscience has seen a major progress by applying Bayesian decision theory to explain human behaviour when humans were confronted with tasks where perception or behavioural outcomes were uncertain. In addition to these advancements, machine learning methods were successfully developed for handling noisy and incomplete datasets. In this research proposal we take an interdisciplinary approach, in which we design human motor control experiments and evaluate optimality of human performance by using machine learning techniques. Specifically, we will use eye-tracking experiments to explain how learning about visual stimuli supports the design of optimal eye movement strategies. Humans explore the visual environment by actively sampling the stimuli through performing a sequence of saccades. Limited time and resources require efficient eye movement planning and an optimal strategy necessitates the adaptation of the eye movement strategy both to the statistics of the stimuli and to the task performed. We develop a framework in which the contribution of top-down (task specific) and bottom-up information (low-level) to eye movement planning can be controlled and assessed. During the course of this proposal we intend to address three problems. First, we will explore how learning novel stimuli in the perceptual domain contributes to eye movement planning. Second, we will develop an optimal learner that relies on the same information that human participants have and assess whether human eye movements optimally exploit available information. Third, we will explore how bottom-up and top-down information is integrated and will use a probabilistic framework to analyze whether the optimal integration is compatible with human performance. This proposal strongly builds on a close collaboration between Prof. Wolpert and mysel

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

FP7-PEOPLE-2009-IEF
Vedi altri progetti per questo bando

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

MC-IEF - Intra-European Fellowships (IEF)

Coordinatore

THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Contributo UE
€ 180 603,20
Indirizzo
TRINITY LANE THE OLD SCHOOLS
CB2 1TN CAMBRIDGE
Regno Unito

Mostra sulla mappa

Regione
East of England East Anglia Cambridgeshire CC
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

Nessun dato
Il mio fascicolo 0 0