Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS
Contenuto archiviato il 2024-06-18

Quantum fields and Curvature--Novel Constructive Approach via Operator Product Expansion

Obiettivo

It was realized already from the beginning that the theory of quantized fields (QFT) does not easily fit into known mathematical structures, and the quest for a satisfactory mathematical foundation continues to-day. Parts of this theory have already been tremendously successful, e.g. in the quantitative description of elementary particles, and ideas from QFT have revolutionized entire fields of mathematics. But the non-perturbative construction of the most important QFT s, namely renormalizable theories in 4d, remains unsolved. The aim of this project is to make a substantial contribution to this quest for the mathematical construction of such QFT s (on curved manifolds), and the exploration of their mathematical structure. We want to pursue a novel ansatz to achieve this goal. The essence of our novel approach is to focus attention on the algebraic backbone of the theory, which manifests itself in the so-called operator-product-expansion. The study of such algebraic structures related to operator products has already been tremendously useful in the study of conformal field theories in low dimensions, but we here propose that a suitable version of it also has great potential to be used as a constructive tool for the much more complicated quantum gauge theories in four dimensions. It is not expected that an explicit solution can be obtained for such models-especially so in curved space-but the idea is instead to analyze powerful consistency conditions on the quantum field theory arising from the OPE ( associativity conditions ) and to use them to prove that the theory exists in a mathematically rigorous sense. Our approach will be complemented by other powerful and deep mathematical tools that have been developed over the past decades, such as the sophisticated non-perturbative expansions uncovered in the school of constructive quantum fields theory , Hochschild cohomology, RG-flow equation techniques, microlocal analysis, curvature expansions, and many more.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: https://op.europa.eu/it/web/eu-vocabularies/euroscivoc.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

ERC-2010-StG_20091028
Vedi altri progetti per questo bando

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

ERC-SG - ERC Starting Grant

Istituzione ospitante

UNIVERSITAET LEIPZIG
Contributo UE
€ 537 226,49
Indirizzo
RITTERSTRASSE 26
04109 Leipzig
Germania

Mostra sulla mappa

Regione
Sachsen Leipzig Leipzig
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

Nessun dato

Beneficiari (2)

Il mio fascicolo 0 0