Skip to main content
European Commission logo
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary
Contenuto archiviato il 2024-06-18

THE DEVELOPMENT OF AN IMPLANTABLE CELLULAR POWER SUPPLY BASED ON RABBIT CARDIAC CELLS

Obiettivo

"This project brings together a research fellow with a unique background in medical physics, electronics and chemistry to the biophysics group at ENS. The aim is to develop a new type of battery based on living cardiac myocyte cells. Through the application of newly-learnt life science skills the fellow will demonstrate how microfluidics can be used for the realization of this perpetual bio-battery.

Global demographics is skewing to that of an aging population which has a higher prevalence of age related diseases and growing dependence on “medical fixes.” Pacemakers and other medical electronics require batteries which must be surgically replaced every 5-7 yrs. The hazardous waste and pain associated with surgical replacement of implanted batteries could be removed by the creation of a cellular power supply which uses blood glucose and oxygen as fuel and oxidizer to produce usable electricity. Demand for such a power supply in the future will be huge and presents an opportunity for Europe to get ahead of America.

The scientific objectives are:
• To create microfluidic devices with high resolution nano-structures for confining cells to specific channel regions.
• To culture rabbit cardiac myocytes both individually and in colonies of varying sizes on the microfluidic device within the special adhesion zones.
• To use electrophysiological and microscopic techniques to better understand the propagation of action potential through individual and colonies of cardiac cells which are specially separated within a microfluidic channel geometry.

The planned deliverables are:
• A series of microfluidic devices capable of supporting individual and colonies of myocytes;
• A demonstrable cellular power supply capable of producing pulsed or continuous electrical currents;
• Several high quality publications relating to myocyte communication and propagation of action potentials for use in an implantable cellular power supply."

Invito a presentare proposte

FP7-PEOPLE-2010-IEF
Vedi altri progetti per questo bando

Coordinatore

ECOLE NORMALE SUPERIEURE
Contributo UE
€ 185 248,00
Indirizzo
45, RUE D'ULM
75230 Paris
Francia

Mostra sulla mappa

Regione
Ile-de-France Ile-de-France Paris
Tipo di attività
Higher or Secondary Education Establishments
Contatto amministrativo
Anne Cormier (Ms.)
Collegamenti
Costo totale
Nessun dato