Skip to main content
European Commission logo
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary
Contenuto archiviato il 2024-06-18

The significance of syntrophic acetate oxidation in the global carbon cycle and the formation of heavy oil

Obiettivo

Geochemical evidence and microbiological data suggest that methanogenic oil degradation occurs in petroleum reservoirs. The proposed research aims to investigate several critical unanswered questions about the processes of microbial conversion of crude oil to methane which leads to the formation of extensive biodegraded oil fields on geological timescales and the microbial ecology of petroleum reservoirs. For realization of the project we have formed the following testable hypotheses: 1. Syntrophic acetate oxidation to H2 and CO2 is a central reaction in crude oil alkane-derived methane production in petroleum reservoirs, 2. Syntrophic acetate-oxidizing bacteria can be cultivated from petroleum reservoir samples and methanogenic oil degrading systems, 3. Different combinations of methanogenic archaea with diverse bacterial partners can achieve a common conversion of acetate to methane via syntrophic acetate oxidation. Tataria (Russia), Dagang and Lyaohe (China), and different North Sea oilfields will be investigated. To identify organisms responsible for methanogenic hydrocarbon degradation and to infer the degradation pathways employed by natural microbial communities, cultivation-based microbiological methods (culturing and isolation of syntrophic acetate oxidizers from petroleum systems, measurement of syntrophic acetate oxidation and methanogenesis rates, reconstruction of syntrophic co-cultures in vitro) will be used. SYNTROPH will also use stable isotope tracers to determine the extent to which acetoclastic methanogenesis or syntrophic acetate oxidation is the sink for acetate in a methanogenic hydrocarbon degrading system. This will be augmented by culture-independent (16S rRNA based analyses, stable isotope probing of ribosomal RNA and rRNA genes). SYNTROPH objectives will deliver important scientific advances in understanding the processes that dictate fossil fuel conversion to methane with potential for enhanced, cleaner, fossil energy recovery.

Invito a presentare proposte

FP7-PEOPLE-2010-IIF
Vedi altri progetti per questo bando

Coordinatore

UNIVERSITY OF NEWCASTLE UPON TYNE
Contributo UE
€ 208 092,80
Indirizzo
KINGS GATE
NE1 7RU Newcastle Upon Tyne
Regno Unito

Mostra sulla mappa

Regione
North East (England) Northumberland and Tyne and Wear Tyneside
Tipo di attività
Higher or Secondary Education Establishments
Contatto amministrativo
Deborah Grieves (Ms.)
Collegamenti
Costo totale
Nessun dato