Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS
Inhalt archiviert am 2024-05-28

Low Dimensional Topology in Budapest

Ziel

"Heegaard Floer theory. In this project (in collaboration with P. Ozsváth and Z. Szabó) we plan to extend our earlier results computing various versions of Heegaard Floer homologies purely combinatorially. We also plan to find combinatorial definitions of these invariants (as graded groups). Such results will potentially lead to a combinatorial description of 4-dimensional Heegaard Floer (mixed) invariants, conjecturally equivalent to Seiberg-Witten invariants of smooth 4-manifolds. In particular, we hope to find a combinatorial proof of Donaldson’s diagonalizability theorem, and find relations between the Heegaard Floer and the fundamental groups of a 3-manifold.

Contact topology. Using Heegaard Floer theory and contact surgery, a systematic study of existence of tight contact structures on 3-manifolds is planned. Similar techniques also apply in studying Legendrian and transverse knots in contact 3-manifolds. In particular, the verification of the existence of tight structures on 3-manifolds given by surgery on a knot (with high enough framing) in the 3-sphere is proposed. Using the Legendrian invariant of knots, Legendrian and transverse simplicity can be conveniently studied. The ideas detailed in this part are planned to be carried out partly in collaboration with Paolo Lisca, Vera Vértesi and Hansjörg Geiges.

Exotic 4-manifolds. Extending our previous results, we plan to investigate the existence of exotic smooth structures on 4-manifolds with small Euler characteristics, such as the complex projective plane CP2, its blow-up CP2#CP2-bar, the product of two complex projective lines CP1×CP1 and ultimately the 4-dimensional sphere S4. We plan to investigate the effect of the Gluck transformation. Possible extensions of the rational blow down procedure (successful in producing exotic structures) will be also studied. We plan collaborations with Zoltán Szabó, Daniel Nash and Mohan Bhupal in these questions."

Wissenschaftliches Gebiet (EuroSciVoc)

CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.

Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen

Programm/Programme

Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.

Thema/Themen

Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.

Aufforderung zur Vorschlagseinreichung

Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.

ERC-2011-ADG_20110209
Andere Projekte für diesen Aufruf anzeigen

Finanzierungsplan

Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.

ERC-AG - ERC Advanced Grant

Gastgebende Einrichtung

HUN-REN RENYI ALFRED MATEMATIKAI KUTATOINTEZET
EU-Beitrag
€ 1 208 980,00
Adresse
REALTANODA STREET 13-15
1053 Budapest
Ungarn

Auf der Karte ansehen

Region
Közép-Magyarország Budapest Budapest
Aktivitätstyp
Other
Links
Gesamtkosten

Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.

Keine Daten

Begünstigte (1)

Mein Booklet 0 0