Skip to main content
Przejdź do strony domowej Komisji Europejskiej (odnośnik otworzy się w nowym oknie)
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS
Zawartość zarchiwizowana w dniu 2024-05-28

Low Dimensional Topology in Budapest

Cel

"Heegaard Floer theory. In this project (in collaboration with P. Ozsváth and Z. Szabó) we plan to extend our earlier results computing various versions of Heegaard Floer homologies purely combinatorially. We also plan to find combinatorial definitions of these invariants (as graded groups). Such results will potentially lead to a combinatorial description of 4-dimensional Heegaard Floer (mixed) invariants, conjecturally equivalent to Seiberg-Witten invariants of smooth 4-manifolds. In particular, we hope to find a combinatorial proof of Donaldson’s diagonalizability theorem, and find relations between the Heegaard Floer and the fundamental groups of a 3-manifold.

Contact topology. Using Heegaard Floer theory and contact surgery, a systematic study of existence of tight contact structures on 3-manifolds is planned. Similar techniques also apply in studying Legendrian and transverse knots in contact 3-manifolds. In particular, the verification of the existence of tight structures on 3-manifolds given by surgery on a knot (with high enough framing) in the 3-sphere is proposed. Using the Legendrian invariant of knots, Legendrian and transverse simplicity can be conveniently studied. The ideas detailed in this part are planned to be carried out partly in collaboration with Paolo Lisca, Vera Vértesi and Hansjörg Geiges.

Exotic 4-manifolds. Extending our previous results, we plan to investigate the existence of exotic smooth structures on 4-manifolds with small Euler characteristics, such as the complex projective plane CP2, its blow-up CP2#CP2-bar, the product of two complex projective lines CP1×CP1 and ultimately the 4-dimensional sphere S4. We plan to investigate the effect of the Gluck transformation. Possible extensions of the rational blow down procedure (successful in producing exotic structures) will be also studied. We plan collaborations with Zoltán Szabó, Daniel Nash and Mohan Bhupal in these questions."

Dziedzina nauki (EuroSciVoc)

Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.

Aby użyć tej funkcji, musisz się zalogować lub zarejestrować

Program(-y)

Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.

Temat(-y)

Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.

Zaproszenie do składania wniosków

Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.

ERC-2011-ADG_20110209
Zobacz inne projekty w ramach tego zaproszenia

System finansowania

Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.

ERC-AG - ERC Advanced Grant

Instytucja przyjmująca

HUN-REN RENYI ALFRED MATEMATIKAI KUTATOINTEZET
Wkład UE
€ 1 208 980,00
Koszt całkowity

Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.

Brak danych

Beneficjenci (1)

Moja broszura 0 0