Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary
Contenuto archiviato il 2024-06-18

Environmental & Dynamical Effects in Computational Photochemistry

Obiettivo

The use of light pulses in chemistry offers the perspective to finely control atomic and molecular motion in a way that not only redefines the vision of a chemical reaction in itself, but also opens a broad new field of applications and functional device miniaturization, generically called nanotechnology.
In order to deliver upon this promise, it must be possible to accurately predict, not only individual molecular behaviour of excited states, but also its time evolution and how this behaviour is changed through the interaction of the molecule with its environment.
The aim of the current proposal is to go beyond the individual molecule static picture, and advance our knowledge on the dynamics of photochemical systems and the effects of an environment upon them, but also to consolidate methodology and procedures that allow predictability and transferability of simulation results. This will be done by systematic comparison and assessment of different simulation methods at distinct levels of theory.
This proposal combines high level electronic structure calculations and state of the art dynamics simulation methods to study the photochemical reactivity of Protonated Schiff Bases, a prototypical cis-trans isomerizing system, relevant for many photobiological processes. Namely the effect of a solvent environment on the reaction paths of multiple izomerization and on the extended crossing seam will be studied in detail. Dynamics of the system will be studied, using quantum dynamics and QM/MM methodologies, for the individual molecule and the environment.
This proposal builds upon the highly complementary skills of the researcher in solvent effects and non-adiabatic dynamics, and the expertises of one of the world leading research groups in the development of electronic structure solutions in photochemistry. The training provided by the fellowship will empower the researcher with a very complete set of tools which will be instrumental in achieving professional maturity.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Invito a presentare proposte

FP7-PEOPLE-2011-IEF
Vedi altri progetti per questo bando

Coordinatore

IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
Contributo UE
€ 200 371,80
Indirizzo
SOUTH KENSINGTON CAMPUS EXHIBITION ROAD
SW7 2AZ LONDON
Regno Unito

Mostra sulla mappa

Regione
London Inner London — West Westminster
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale
Nessun dato