Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS
Inhalt archiviert am 2024-06-18

Qualitative Theory of finite-time and random dynamical systems

Ziel

This research project aims at developing the qualitative theory of nonautonomous (i.e. time-dependent, random or control) systems in new directions beyond the traditional setting which are highly relevant in the applied science, but surprisingly almost unexplored.

The theory of nonautonomous dynamical systems has experienced a renewed and steadily growing interest in the last twenty years, stimulated also by synergetic effects of disciplines which have developed relatively independent for some time such as topological skew product flows, random dynamical systems, finite-time dynamics, and control systems. The importance of nonautonomous dynamical systems is illustrated by the fact that the technological and economical development of our society has generated the need to deal with very complex systems that require an accurate level of understanding. The crisis of the financial markets and weather phenomena associated to climate change such as El Nino, are examples of dynamical processes with a deep economic impact that require sophisticated models to take nonautonomous influences into account.

The main challenge in the study of nonautonomous phenomena is to understand the often very complicated dynamical behaviour both as a scientific and mathematical problem. The central aim of this research project is to develop insights and tools in finite-time and random qualitative theory from a mathematical viewpoint which are relevant and have a potentially high impact on the applied sciences. Building upon my success I had during the graduate years from 2006 to 2009 and postdoc since 2009, the proposal contains the following research directions:

(i) Invariant manifold theory of finite-time dynamical systems,
(ii) Bifurcation theory of finite-time dynamical systems,
(iii) Bifurcation theory of random dynamical systems,
(iv) Normal form theory of random dynamical systems.

Wissenschaftliches Gebiet (EuroSciVoc)

CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.

Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen

Programm/Programme

Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.

Thema/Themen

Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.

Aufforderung zur Vorschlagseinreichung

Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.

FP7-PEOPLE-2011-IEF
Andere Projekte für diesen Aufruf anzeigen

Finanzierungsplan

Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.

MC-IEF - Intra-European Fellowships (IEF)

Koordinator

IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
EU-Beitrag
€ 209 033,40
Adresse
SOUTH KENSINGTON CAMPUS EXHIBITION ROAD
SW7 2AZ London
Vereinigtes Königreich

Auf der Karte ansehen

Region
London Inner London — West Westminster
Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten

Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.

Keine Daten
Mein Booklet 0 0