Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS
Contenuto archiviato il 2024-06-18

Isoperimetric and Concentration Inequalities in High-Dimensional Convex Spaces

Obiettivo

"The proposed project lies at the intersection of the local theory of Banach spaces (more precisely ""Asymptotic Geometric Analysis""), Global Riemannian Geometry, and the study of isoperimetric and concentration properties of such spaces. We will study Riemannian manifolds endowed with a probability measure, whose (generalized Ricci) curvature is non-negative (""convex""), or more generally, bounded below (""semi-convex""); an important example is that of the uniform measure on a convex bounded domain in Euclidean space. Despite the immense diversity of these structures, even in the Euclidean case, it is known that they exhibit various unifying geometric and probabilistic properties. In this project, we are interested in various quantitative manifestations of the concentration of measure on these spaces, as their dimension tends to infinity. These include isoperimetric inequalities, providing lower bounds on the boundary measure of sets; Sobolev-type inequalities, such as the classical Poincar\'e (or Spectral-Gap) and logarithmic-Sobolev inequalities; and concentration of measure of various Lipschitz functionals, such as the distance functional. All present conjectures suggest that despite the great diversity, convexity and high-dimensionality serve as unifying forces which render all of these spaces not very different from some canonical ones, like the uniform measure on a Euclidean ball or hyper-cube. In recent years there has been much progress in the analysis of these and related questions. The proposed project intends to deepen and extend our qualitative and quantitative understanding of isoperimetric and concentration inequalities on high-dimensional convex and semi-convex manifolds-with-density in general, and on log-concave measures and convex bodies in particular."

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

FP7-PEOPLE-2011-CIG
Vedi altri progetti per questo bando

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

MC-CIG - Support for training and career development of researcher (CIG)

Coordinatore

TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Contributo UE
€ 100 000,00
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

Nessun dato
Il mio fascicolo 0 0