Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS
Contenuto archiviato il 2024-06-18

Statistical Physics Approach to Reconstruction in Compressed Sensing

Obiettivo

Compressed sensing is triggering a major evolution in signal acquisition: it indicates that most data, signals and images, that are usually compressible and have redundancy, can be reconstructed from much fewer measurements than what was usually considered necessary, resulting in a drastic gain of time, cost, and measurement precision. In order to make this groundbreaking improvement possible, compressed sensing deals with how measurements should be performed, and how, in a second step, to use computational power in order to reconstruct the original signal. Compressed sensing can be used for many applications (speeding up magnetic resonance imaging without the loss of resolution, performing X-ray scans with less radiation exposure, sensing and compressing data simultaneously, measurements in acoustic holography, in system biology, faster confocal microscopy, etc ...). Currently used measurement protocols and reconstruction techniques, however, are still limited to acquisition rates considerably higher than what is theoretically necessary.

The aim of this project is to develop a new interdisciplinary approach to compressed sensing, based on a statistical physics inspired methodology, whose preliminary application by the PI already yield spectacular results. I propose to use both a new algorithm for the reconstruction algorithm, with a mean-field inspired “Belief Propagation” method, and a new class of compressed sensing measurement schemes, motivated by a statistical physics study of the problem and by the theory of crystal nucleation in first order transitions. For reasons detailed below, this statistical physics approach is extremely promising theoretical framework to tackle compressed sensing and I believe it can eventually lead to optimal performance. I expect that the progress we will make in this direction will be instrumental also for other inference and inverse problems at the crossroad between physics and computer science.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

ERC-2012-StG_20111012
Vedi altri progetti per questo bando

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

ERC-SG - ERC Starting Grant

Istituzione ospitante

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Contributo UE
€ 1 077 960,00
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

Nessun dato

Beneficiari (1)

Il mio fascicolo 0 0