Skip to main content
European Commission logo
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary
Contenuto archiviato il 2024-06-18

Stochastic and statistical properties of dislocation plasticity

Obiettivo

The dominant mechanism for producing large irreversible (plastic) strain in atomic crystals is the motion of interacting dislocations, that are line defects in the crystalline lattice. Their collective dynamics plays a dominant role in plastic yield, strain bursts, micron-scale size effects and creep deformation at high temperatures. The project is motivated by the apparent technological need for developing a profound physically-based understanding of these phenomena. We will apply state-of-the-art experiments and well-established dislocation simulations to (i) investigate the stochastic properties of micron-scale plasticity and dislocation avalanches, (ii) explore the nature of the plastic flow transition, (iii) to develop a continuum plasticity model that accounts for boundaries and fluctuations and (iv) to investigate high temperature creep properties of 2D dusty plasma. By applying elements of non-equilibrium statistical mechanics we will develop higher scale models of these dislocation mediated phenomena. Completion of the project is expected not only to lead to top-level scientific results on the stochastic properties of collective dislocation dynamics but also to provide tools being promising candidates for further technological applications.

The EU contribution will help the applicant to establish himself as an individual researcher after his mobility period and contribute significantly to the scientific success of his research career. By improving the chances of his permanent integration, the grant would help to transfer the knowledge he acquired abroad to the host country, and enable him to maintain his scientific international co-operations. The funding will, therefore, contribute for the European Union to maintain a leading role in the field of plasticity and materials science in general.

Invito a presentare proposte

FP7-PEOPLE-2012-CIG
Vedi altri progetti per questo bando

Coordinatore

EOTVOS LORAND TUDOMANYEGYETEM
Contributo UE
€ 100 000,00
Indirizzo
EGYETEM TER 1-3
1053 Budapest
Ungheria

Mostra sulla mappa

Regione
Közép-Magyarország Budapest Budapest
Tipo di attività
Higher or Secondary Education Establishments
Contatto amministrativo
István Groma (Prof.)
Collegamenti
Costo totale
Nessun dato