Objectif
"The proposed project will advance our knowledge in the field of model theory and its applications to functional analysis and Banach space geometry. The research will mobilize recently developed powerful model theoretic techniques in order to throw more light on important and basic questions in Banach space theory. The project will enhance exchange of ideas and techniques between different areas of mathematics, especially stability theory within model theory and Banach space theory.
Specifically, we propose to explore connections between model theoretic stability and geometric structure of a fixed Banach space, as well as an elementary class of Banach spaces. The main idea is that stability leads to deeper understanding of spreading models in the ultra-powers of a structure. The project will continue and expand the work of Krivine and Maurey, who proved that stability
implies the existence of an almost isometric copy of an l_p space. One of the questions we are going to address is whether weaker versions of stability entail the existence of isomorphic copies of basic sequence spaces.
Another question that we will investigate has to do with the phenomenon of categoricity. A class of Banach spaces is called categorical if it has a unique structure (up to isometry) of some uncountable density. We have recently shown that any such class is strongly related to the class of Hilbert spaces, affirming a 35-year old Henson's Conjecture. Recent developments suggest stronger geometric forms of the conjecture, which we will address.
In addition, we propose to investigate an analogous conjecture for categoricity under isomorphisms (instead of isometries), which is a much more challenging problem. However, given recent progress in ""geometric stability theory"" in the context of Banach spaces (due to the my collaborators and myself), we are confident that many interesting results are within reach now."
Champ scientifique (EuroSciVoc)
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
- sciences naturelles mathématiques mathématiques pures algèbre algèbre linéaire
- sciences naturelles mathématiques mathématiques pures mathématiques discrètes logique mathématique
- sciences naturelles mathématiques mathématiques pures analyse mathématique analyse fonctionnelle
- sciences naturelles mathématiques mathématiques pures géométrie
Vous devez vous identifier ou vous inscrire pour utiliser cette fonction
Nous sommes désolés... Une erreur inattendue s’est produite.
Vous devez être authentifié. Votre session a peut-être expiré.
Merci pour votre retour d'information. Vous recevrez bientôt un courriel confirmant la soumission. Si vous avez choisi d'être informé de l'état de la déclaration, vous serez également contacté lorsque celui-ci évoluera.
Programme(s)
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
Thème(s)
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Appel à propositions
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
FP7-PEOPLE-2012-CIG
Voir d’autres projets de cet appel
Régime de financement
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
MC-CIG - Support for training and career development of researcher (CIG)
Coordinateur
91904 JERUSALEM
Israël
Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.