Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS
Inhalt archiviert am 2024-05-29

Model theoretic stability for Banach spaces

Ziel

"The proposed project will advance our knowledge in the field of model theory and its applications to functional analysis and Banach space geometry. The research will mobilize recently developed powerful model theoretic techniques in order to throw more light on important and basic questions in Banach space theory. The project will enhance exchange of ideas and techniques between different areas of mathematics, especially stability theory within model theory and Banach space theory.

Specifically, we propose to explore connections between model theoretic stability and geometric structure of a fixed Banach space, as well as an elementary class of Banach spaces. The main idea is that stability leads to deeper understanding of spreading models in the ultra-powers of a structure. The project will continue and expand the work of Krivine and Maurey, who proved that stability
implies the existence of an almost isometric copy of an l_p space. One of the questions we are going to address is whether weaker versions of stability entail the existence of isomorphic copies of basic sequence spaces.

Another question that we will investigate has to do with the phenomenon of categoricity. A class of Banach spaces is called categorical if it has a unique structure (up to isometry) of some uncountable density. We have recently shown that any such class is strongly related to the class of Hilbert spaces, affirming a 35-year old Henson's Conjecture. Recent developments suggest stronger geometric forms of the conjecture, which we will address.

In addition, we propose to investigate an analogous conjecture for categoricity under isomorphisms (instead of isometries), which is a much more challenging problem. However, given recent progress in ""geometric stability theory"" in the context of Banach spaces (due to the my collaborators and myself), we are confident that many interesting results are within reach now."

Wissenschaftliches Gebiet (EuroSciVoc)

CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.

Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen

Programm/Programme

Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.

Thema/Themen

Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.

Aufforderung zur Vorschlagseinreichung

Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.

FP7-PEOPLE-2012-CIG
Andere Projekte für diesen Aufruf anzeigen

Finanzierungsplan

Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.

MC-CIG - Support for training and career development of researcher (CIG)

Koordinator

THE HEBREW UNIVERSITY OF JERUSALEM
EU-Beitrag
€ 47 916,67
Adresse
EDMOND J SAFRA CAMPUS GIVAT RAM
91904 JERUSALEM
Israel

Auf der Karte ansehen

Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten

Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.

Keine Daten

Beteiligte (1)

Mein Booklet 0 0