Obiettivo
"The study of Arnold diffusion in Hamiltonian systems has received a lot of attention in the last years. This phenomenon arises when a small perturbation in a system causes big changes in it leading to global instabilities. In recent years there have been partial results characterizing this phenomenon and proving its existence in Hamiltonian systems but mostly for systems of low dimension. This project wants to be a step forward showing that such instabilities also arise in Dynamical Systems on lattices and in Hamiltonian Partial Differential Equations (HPDEs), which can be seen as Dynamical Systems of infinite dimension. We will focus our attention on two different problems: the Fermi-Pasta-Ulam model and the energy transfer phenomenon in Hamiltonian PDEs.
Regarding the first part, we will consider the Fermi-Pasta-Ulam model (FPU), which is a model of a discretized nonlinear string. One would expect that as time evolves, the system reaches equipartition of energy among the modes. Nevertheless, numerical experiments by Fermi, Pasta and Ulam (1955) showed that in some settings it is not reached in the time range for which the numerical experiments are reliable. This fact is called the FPU paradox. To understand how the equipartition of energy can be reached after longer times we plan to find instability mechanisms in the low energy regime.
In the second part we will prove the existence of solutions of some HPDEs in the d dimensional torus which undergo transfer of energy to higher modes as time tends to infinity. This transfer of energy can be measured by the growth of high Sobolev norms. First, we plan to prove the existence of orbits with arbitrarily large finite growth of Sobolev norms for different Hamiltonian PDEs. Finally we plan to prove Bourgain's conjecture, which asserts the existence of orbits of the cubic defocusing nonlinear Schrodinger equation in the two torus whose s-Sobolev norms tend to infinity as time tends to infinity."
Campo scientifico (EuroSciVoc)
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: https://op.europa.eu/it/web/eu-vocabularies/euroscivoc.
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: https://op.europa.eu/it/web/eu-vocabularies/euroscivoc.
- scienze naturali matematica matematica applicata sistemi dinamici
- scienze naturali matematica matematica pura analisi matematica equazioni differenziali equazioni differenziali parziali
È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione
Siamo spiacenti… si è verificato un errore inatteso durante l’esecuzione.
È necessario essere autenticati. La sessione potrebbe essere scaduta.
Grazie per il tuo feedback. Riceverai presto un'e-mail di conferma dell'invio. Se hai scelto di ricevere una notifica sullo stato della segnalazione, sarai contattato anche quando lo stato della segnalazione cambierà.
Programma(i)
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
Argomento(i)
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Invito a presentare proposte
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
FP7-PEOPLE-2012-IEF
Vedi altri progetti per questo bando
Meccanismo di finanziamento
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
Coordinatore
75794 Paris
Francia
I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.