Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS
Contenuto archiviato il 2024-05-29

Independence and Convolutions in Noncommutative Probability

Obiettivo

Noncommutative probability, also called quantum probability or algebraic
probability theory, is an extension of classical probability theory where the
algebra of random variables is replaced by a possibly noncommutative
algebra. A surprising feature of noncommutative probability is the existence
of many very different notions of independence. The most prominent among them
is freeness or free probability, which was introduced by Voiculescu to study
questions in operator algebra theory. In the last twenty-five years, free
probability has turned into a very active and very competitive research area,
in which analogues for many important probabilistic notions like limit
theorems, infinite divisibility, and L\'evy processes have been discovered. It
also turned out to be closely related to random matrix theory, which has
important applications in quantum physics and telecommunication.

The current project proposes to study the mathematical theory of independence
in noncommutative probability, and the associated convolution products. We
will concentrate on the following topics:

(1) Applications of monotone independence to free probability. Some
applications have been found already, but recent work indicates that much more
is possible.

(2) Analysis of infinitely divisible distributions in classical and free
probability. Common complex analysis methods will be used for both classes,
and we expect more insight into their mutual relations.

(3) Application and development of Lenczewski's matricial free
independence. This concept introduces very new ideas, whose better
understanding will certainly lead to new interesting results.

The methods we will use in this project come not only from noncommutative
probability, but also from functional analysis, complex analysis, combinatorics, classical probability, random matrices, and graph theory.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: https://op.europa.eu/it/web/eu-vocabularies/euroscivoc.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

FP7-PEOPLE-2012-IIF
Vedi altri progetti per questo bando

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

MC-IIF - International Incoming Fellowships (IIF)

Coordinatore

UNIVERSITE DE FRANCHE-COMTE
Contributo UE
€ 194 046,60
Indirizzo
1 RUE CLAUDE GOUDIMEL
25000 Besancon
Francia

Mostra sulla mappa

Regione
Bourgogne-Franche-Comté Franche-Comté Doubs
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

Nessun dato
Il mio fascicolo 0 0