Skip to main content
European Commission logo print header

Tracking Glycosylations with Targeted, Molecule-Sized “Noses”

Obiettivo

Glycobiology is poised to be the next revolution in biology and medicine; however, technical difficulties in detecting and characterizing glycans prevent many biologists from entering this field, thus hampering new discoveries and innovations. Herein, we propose developing a conceptually novel technology that will allow straightforward identification of specific glycosylation patterns in biofluids and in live cells. Distinct glycosylation states will be differentiated by developing “artificial noses” in the size of a single molecule, whereas selectivity toward particular glycoproteins will be obtained by attaching them to specific protein binders. To achieve high sensitivity and accuracy, several innovations in molecular recognition and fluorescence signalling are integrated into the design of these unconventional molecular analytical devices.
One of the most important motivations for developing these sensors lies in their potential to diagnose a variety of diseases in their early stages. For example, we describe ways by which prostate cancer could be rapidly and accurately detected by a simple blood test that analyzes the glycosylation profile of the prostate-specific antigen (PSA). Another exceptional feature of these molecular analytical devices is their ability to differentiate between glycosylation patterns of specific proteins in live cells. This will solve an immense challenge in analytical glycobiology and will allow one to study how glycosylation contributes to diverse cell-signalling pathways. Finally, in the context of molecular-scale analytical devices, the proposed methodology is exceptional. We will show how “artificial noses” can be designed to target nanometric objects (e.g. protein surfaces) and operate in confined microscopoic spaces (e.g. cells), which macroscopic arrays cannot address. Taken together, we expect that the proposed technology will break new ground in medical diagnosis, cell biology, and biosensing technologies.

Invito a presentare proposte

ERC-2013-StG
Vedi altri progetti per questo bando

Meccanismo di finanziamento

ERC-SG - ERC Starting Grant

Istituzione ospitante

WEIZMANN INSTITUTE OF SCIENCE
Contributo UE
€ 1 398 429,00
Indirizzo
HERZL STREET 234
7610001 Rehovot
Israele

Mostra sulla mappa

Tipo di attività
Higher or Secondary Education Establishments
Ricercatore principale
David Margulies (Dr.)
Contatto amministrativo
Gabi Bernstein (Ms.)
Collegamenti
Costo totale
Nessun dato

Beneficiari (1)