Skip to main content
European Commission logo
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary
Contenuto archiviato il 2024-06-18

NanoStreams: A Hardware and Software Stack for Real-Time Analytics on Fast Data Streams

Descrizione del progetto


Advanced Computing, embedded and Control Systems

NanoStreams co-designs a micro-server architecture and software stack that address the unique challenges of hybrid transactional-analytical workloads, which are encountered by emerging applications of real-time big-data analytics. To this end, NanoStreams brings together embedded system design principles, application-specific compilers, and HPC software practices.
The processor technology that underpins the NanoStreams micro-server is an amalgam of RISC cores and nano-cores, a new class of programmable custom accelerators. Novel automatic compiler generation and parameterization technology enables low-effort programming and integration of nano-cores into application-specific, many-core accelerators. The proposed heterogeneous Analytics-on-Chip processor forms the backbone of the NanoStreams micro-server, which further leverages a hybrid DRAM-PCRAM memory system and a non-cache-coherent scale-out architecture to achieve extreme energy-efficiency.
The software stack of the NanoStreams micro-server is rooted in domain-specific languages for analytical queries, which the project implements with a streaming dataflow execution model. The language runtime system uses real-time scheduling, performance isolation techniques and region-based memory management to minimize latency on the transactional path and maximize throughput on the analytical path. NanoStreams virtualizes lightweight PCRAM-based persistent memory, for direct user access and locality optimization.
The project will deliver a real-silicon prototype, based on the Xilinx Zynq platform and ARM-Linux. The quantitative objective of NanoStreams, in comparison with contemporary HPC servers, is to reduce analytical response time of commercial in-memory databases by at least 30%, while sustaining transactional throughput and improving system energy-efficiency and programmability. NanoStreams will demonstrate these advances with industry-standard workloads and four real-world case studies.

Campo scientifico

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP.

Invito a presentare proposte

FP7-ICT-2013-10
Vedi altri progetti per questo bando

Meccanismo di finanziamento

CP - Collaborative project (generic)

Coordinatore

THE QUEEN'S UNIVERSITY OF BELFAST
Contributo UE
€ 966 973,00
Indirizzo
UNIVERSITY ROAD LANYON BUILDING
BT7 1NN Belfast
Regno Unito

Mostra sulla mappa

Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale
Nessun dato

Partecipanti (6)