Ziel
This project proposes a 12-month mobility of the applicant F. Toninelli from the University of Lyon 1 to the Mathematics and Physics Department of Roma Tre. The applicant will be supervised by local scientists
F. Martinelli and A. Giuliani.
The scientific project focuses on the probabilistic study of dynamical and equilibrium properties of discrete random interfaces, spin models and dimer models. One of the main goals is to derive, starting from a microscopic stochastic dynamics, a macroscopic deterministic evolution (often, an anisotropic mean curvature flow) in the scaling limit. Another important issue are equilibrium fluctuations of random discrete interfaces and dimer models. The proposed research has tight links with mathematical physics, discrete geometry and rigorous quantum field theory. Mathematical tools to be employed include Markov Chains, conformal invariance, random walks on graphs, rigorous Renormaliazation Group techniques... More specific problems that will be attacked include:
1) Dynamics and equilibrium fluctuations of random dimer coverings (perfect matchings) of bipartite graphs: these
are a central object in combinatorics and discrete geometry and can be seen as discrete interfaces. How does their geometry evolve under stochastic dynamics? What is the dynamical consequence of the conformal invariance properties of their equilibrium fluctuations? How quickly can one sample a random perfect matching (mixing time)?
2) Universality for two-dimensional statistical mechanics models. We will study the critical properties of weakly interacting dimers on the square lattice (the non-interacting case being exactly solvable). As a long-term goal, we wish to study the spin-spin correlation functions of two-dimensional, non-integrable critical Ising models.
3) Discrete SOS model. What large-deviation equilibrium properties and the dynamical metastability phenomena of the two-dimensional Solid-on-Solid discrete interface model?
Wissenschaftliches Gebiet (EuroSciVoc)
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
- Naturwissenschaften Mathematik angewandte Mathematik mathematische Physik
- Naturwissenschaften Naturwissenschaften Quantenphysik Quantenfeldtheorie
- Naturwissenschaften Naturwissenschaften klassische Mechanik statistische Mechanik
- Naturwissenschaften Mathematik reine Mathematik Geometrie
- Naturwissenschaften Mathematik reine Mathematik diskrete Mathematik Graphentheorie
Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen
Wir bitten um Entschuldigung ... während der Ausführung ist ein unerwarteter Fehler aufgetreten.
Sie müssen sich authentifizieren. Ihre Sitzung ist möglicherweise abgelaufen.
Vielen Dank für Ihr Feedback. Sie erhalten in Kürze eine E-Mail zur Übermittlungsbestätigung. Wenn Sie sich für eine Benachrichtigung über den Berichtsstatus entschieden haben, werden Sie auch im Falle einer Änderung des Berichtsstatus benachrichtigt.
Programm/Programme
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
Thema/Themen
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Aufforderung zur Vorschlagseinreichung
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
FP7-PEOPLE-2013-IEF
Andere Projekte für diesen Aufruf anzeigen
Finanzierungsplan
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
Koordinator
00154 ROMA
Italien
Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.