Skip to main content
Przejdź do strony domowej Komisji Europejskiej (odnośnik otworzy się w nowym oknie)
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS
Zawartość zarchiwizowana w dniu 2024-06-18

Dimers, Markov chains and Critical Phenomena

Cel

This project proposes a 12-month mobility of the applicant F. Toninelli from the University of Lyon 1 to the Mathematics and Physics Department of Roma Tre. The applicant will be supervised by local scientists
F. Martinelli and A. Giuliani.

The scientific project focuses on the probabilistic study of dynamical and equilibrium properties of discrete random interfaces, spin models and dimer models. One of the main goals is to derive, starting from a microscopic stochastic dynamics, a macroscopic deterministic evolution (often, an anisotropic mean curvature flow) in the scaling limit. Another important issue are equilibrium fluctuations of random discrete interfaces and dimer models. The proposed research has tight links with mathematical physics, discrete geometry and rigorous quantum field theory. Mathematical tools to be employed include Markov Chains, conformal invariance, random walks on graphs, rigorous Renormaliazation Group techniques... More specific problems that will be attacked include:

1) Dynamics and equilibrium fluctuations of random dimer coverings (perfect matchings) of bipartite graphs: these
are a central object in combinatorics and discrete geometry and can be seen as discrete interfaces. How does their geometry evolve under stochastic dynamics? What is the dynamical consequence of the conformal invariance properties of their equilibrium fluctuations? How quickly can one sample a random perfect matching (mixing time)?

2) Universality for two-dimensional statistical mechanics models. We will study the critical properties of weakly interacting dimers on the square lattice (the non-interacting case being exactly solvable). As a long-term goal, we wish to study the spin-spin correlation functions of two-dimensional, non-integrable critical Ising models.

3) Discrete SOS model. What large-deviation equilibrium properties and the dynamical metastability phenomena of the two-dimensional Solid-on-Solid discrete interface model?

Dziedzina nauki (EuroSciVoc)

Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.

Aby użyć tej funkcji, musisz się zalogować lub zarejestrować

Program(-y)

Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.

Temat(-y)

Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.

Zaproszenie do składania wniosków

Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.

FP7-PEOPLE-2013-IEF
Zobacz inne projekty w ramach tego zaproszenia

System finansowania

Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.

MC-IEF - Intra-European Fellowships (IEF)

Koordynator

UNIVERSITA DEGLI STUDI ROMA TRE
Wkład UE
€ 124 621,40
Koszt całkowity

Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.

Brak danych
Moja broszura 0 0