Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS
Inhalt archiviert am 2024-05-28

Variational Basis Learning for Statistical Motion Atlases: Application to Quantitative Dynamic Cardiac Imaging

Ziel

Pulmonary Arterial Hypertension (PAH) is a severe progressive disorder characterised by a vasculopathy of the small pulmonary arteries to the lung. Failure of the right ventricle (RV) to adapt to elevated resistance to blood flow results in death, usually within 3 years for untreated patients with PAH. Image-based global measures can only reflect the overall performance of the RV; however, there is good evidence that PAH can be identified by localised motion abnormalities in the RV and the interventricular septum (IVS), without the need for invasive and expensive right heart catheterisation.

In this proposal, we are interested in assessment of the diagnostic value of the motion abnormalities in RV and IVS, relevant to PAH. Given two groups of PAH patients and healthy controls, an important distinguishing feature of our computational framework with the existing literature is that it will allow multiscale evaluations all at the same time: L1) At the population level; a statistical motion atlas describing the “average” pattern of the heart motion over the population will be constructed. Two atlases will be made for PAH patients and healthy control subjects; L2) at the patient level; for any subject a probability value of being a patient with PAH will be measured to describe the severity of the disease; L3) at the myocardium level; localised and expert interpretable abnormality map over the heart will be measured for a given patient. From two populations of patients with PAH and normal controls, we aim to learn a set of optimal basis functions that are both discriminative at the patient level, and sparsely fitted to the pathological areas.

The proposed method is a novel full Bayesian probabilistic framework, which learns the sparseness and the number of the basis function from the data by maximising the model evidence using variational Bayes.

Wissenschaftliches Gebiet (EuroSciVoc)

CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.

Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen

Programm/Programme

Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.

Thema/Themen

Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.

Aufforderung zur Vorschlagseinreichung

Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.

FP7-PEOPLE-2013-IIF
Andere Projekte für diesen Aufruf anzeigen

Finanzierungsplan

Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.

MC-IIF - International Incoming Fellowships (IIF)

Koordinator

THE UNIVERSITY OF SHEFFIELD
EU-Beitrag
€ 309 235,20
Adresse
FIRTH COURT WESTERN BANK
S10 2TN SHEFFIELD
Vereinigtes Königreich

Auf der Karte ansehen

Region
Yorkshire and the Humber South Yorkshire Sheffield
Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten

Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.

Keine Daten
Mein Booklet 0 0