Descrizione del progetto
Approcci innovativi alle limitazioni delle risorse nell’interrogazione dei grandi grafi
La risposta alle interrogazioni o alle domande (estrarre informazioni da o agire sui dati memorizzati in una banca dati) è alla base di molte applicazioni moderne, tra cui i social media, i chatbot e i motori di ricerca su Internet. La banca dati è un grafo di conoscenza in cui i nodi rappresentano i punti dati e gli spigoli sono le «connessioni» tra di essi. L’interrogazione simultanea di più banche dati migliorerà le capacità, ma sono necessari nuovi approcci. Il progetto GRACE, finanziato dal Consiglio europeo della ricerca, intende sviluppare un linguaggio di interrogazione innovativo per i grafi, una teoria della complessità computazionale rivista e una formalizzazione della scalabilità parallela con l’aumento dei processori. Quando i nuovi algoritmi non riescono a trovare risposte esatte, gli schemi di approssimazione elaborati dal gruppo di ricerca troveranno un equilibrio tra precisione e costi.
Obiettivo
When we search for a product, can we find, using a single query, top choices ranked by Google and at the same time, recommended by our friends connected on Facebook? Is such a query tractable on the social graph of Facebook, which has over 1.31 billion nodes and 170 billion links? Is it feasible to evaluate such a query if we have bounded resources such as time and computing facilities? These questions are challenging: they demand a departure from the traditional query evaluation paradigm and from the classical computational complexity theory, and call for new resource-constrained methodologies to query big graphs.
This project aims to tackle precisely these challenges, from fundamental problems to practical techniques, using radically new approaches. We will develop a graph pattern query language that allows us to, e.g. unify Web search (via keywords) and social search (via graph patterns), and express graph pattern association rules for social media marketing. We will revise the conventional complexity theory to characterize the tractability of queries on big data, and formalize parallel scalability with the increase of processors. We will also develop algorithmic foundations and resource-constrained techniques for querying big graphs, by ``making big data small''. When exact answers are beyond reach in big graphs, we will develop data-driven and query-driven approximation schemes to strike a balance between the accuracy and cost. As a proof of the theory, we will develop GRACE, a system to answer graph pattern queries on big GRAphs within bounded resourCEs, based on the techniques developed. We envisage that the project will deliver methodological foundations and practical techniques for querying big graphs in general, and for improving search engines and social media marketing in particular. A breakthrough in this subject will advance several fields, including databases, theory of computation, parallel computation and social data analysis.
Campo scientifico
- natural sciencescomputer and information sciencesdata sciencebig data
- natural sciencescomputer and information sciencesartificial intelligencecomputer vision
- natural sciencesmathematicspure mathematicsdiscrete mathematicsgraph theory
- natural sciencescomputer and information sciencesinternetworld wide web
- natural sciencescomputer and information sciencesdatabasesrelational databases
Parole chiave
Programma(i)
Argomento(i)
Meccanismo di finanziamento
ERC-ADG - Advanced GrantIstituzione ospitante
EH8 9YL Edinburgh
Regno Unito