Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS

PhenoMeNal: A comprehensive and standardised e-infrastructure for analysing medical metabolic phenotype data

CORDIS bietet Links zu öffentlichen Ergebnissen und Veröffentlichungen von HORIZONT-Projekten.

Links zu Ergebnissen und Veröffentlichungen von RP7-Projekten sowie Links zu einigen Typen spezifischer Ergebnisse wie Datensätzen und Software werden dynamisch von OpenAIRE abgerufen.

Leistungen

D5.1 Build System with continuous integration, providing development snapshots of PhenoMeNal Virtual Machine Images (öffnet in neuem Fenster)

Build System with continuous integration, providing development snapshots of PhenoMeNal Virtual Machine Images

D7.1.1 Workshop 1 on best practices in handling sensitive human data, taking into account National and Institutional legal policies (öffnet in neuem Fenster)

Workshop 1 on best practices in handling sensitive human data, taking into account National and Institutional legal policies

D9.5.2 Updated Data Processing Virtual Machine Image 2 (öffnet in neuem Fenster)

Updated Data Processing Virtual Machine Image 2

D9.5.1 Updated Preprocess Virtual Machine Image 1 (öffnet in neuem Fenster)

Updated Preprocess Virtual Machine Image 1

D7.1.2 Workshop 2 on best practices in handling sensitive human data, taking into account National and Institutional legal policies (öffnet in neuem Fenster)

Workshop 2 on best practices in handling sensitive human data, taking into account National and Institutional legal policies

D8.4.2 Reference implementation guidelines and validation rules (öffnet in neuem Fenster)

Reference implementation guidelines and validation rules

D3.4.2 Two training workshops on omics data deposition, grid processing, dissemination and access (öffnet in neuem Fenster)

Two training workshops on omics data deposition, grid processing, dissemination and access.

D5.3 Operational grid/cloud allowing for combining data, tools, and compute VMIs. Most services available. Functional integration with EGI federated cloud/grid for compute resources. Demonstrated analysis on private/sensitive data in secure environment (öffnet in neuem Fenster)

Operational grid/cloud allowing for combining data, tools, and compute VMIs. Most services available. Functional integration with EGI federated cloud/grid for compute resources. Demonstrated analysis on private/sensitive data in secure environment

D9.2.1 PhenoMeNal-Preprocess Virtual Machine Image 1 to enable data producers to locally process raw data into standard formats supported in PhenoMeNal (öffnet in neuem Fenster)

PhenoMeNal-Preprocess Virtual Machine Image 1 to enable data producers to locally process raw data into standard formats supported in PhenoMeNal

D5.2 A beta-version of PhenoMeNal integration VMI capable of proof- of-concept integration with other VMIs. Initial services online supporting PhenoMeNal data standards (öffnet in neuem Fenster)

A beta-version of PhenoMeNal integration VMI capable of proof- of-concept integration with other VMIs. Initial services online supporting PhenoMeNal data standards

D6.4 Participating Biobanks and repositories connected to the VRC (öffnet in neuem Fenster)

Participating Biobanks and repositories connected to the VRC

D9.2.2 PhenoMeNal-Data Virtual Machine Image 2 to enable sharing and dissemination of standardised and processed omics data to participating online repositories, like MetaboLights (öffnet in neuem Fenster)

PhenoMeNal-Data Virtual Machine Image 2 to enable sharing and dissemination of standardised and processed omics data to participating online repositories, like MetaboLights

D8.4 Signal processing and analysis data exchange format (öffnet in neuem Fenster)

Signal processing and analysis data exchange format

D8.4.1 Specifications for derived data matrices specifications and terminology for description of analysis and statistical results (öffnet in neuem Fenster)

Specifications for derived data matrices specifications and terminology for description of analysis and statistical results

D8.3 nmrML, mzML data exchange formats and associated terminologies for instrument raw, with reference implementation guidelines and validation rules (öffnet in neuem Fenster)

nmrML, mzML data exchange formats and associated terminologies for instrument raw, with reference implementation guidelines and validation rules

D9.5.5 Updated Portal Virtual Machine Image 5 (öffnet in neuem Fenster)

Updated Portal Virtual Machine Image 5

D9.2.4 Compute Virtual Machine Image 4 to enable standardised compute capabilities for all the grid supplying partners (öffnet in neuem Fenster)

Compute Virtual Machine Image 4 to enable standardised compute capabilities for all the grid supplying partners

D3.4.1 Two training workshops on omics data deposition, grid processing, dissemination and access (öffnet in neuem Fenster)

Two training workshops on omics data deposition, grid processing, dissemination and access.

D9.2.3 Services Virtual Machine Image 3 to facilitate the PhenoMeNal toolsets and pipelines, both locally and in the grid (öffnet in neuem Fenster)

Services Virtual Machine Image 3 to facilitate the PhenoMeNal toolsets and pipelines, both locally and in the grid

D9.5.4 Updated Compute Virtual Machine Image 4 (öffnet in neuem Fenster)

Updated Compute Virtual Machine Image 4

D5.4 A federated cloud/grid system running on partners’ infrastructures for public data and tools. All services available. Operational installation at ICL clinical site for decision support (öffnet in neuem Fenster)

A federated cloud/grid system running on partners’ infrastructures for public data and tools. All services available. Operational installation at ICL clinical site for decision support

D9.2.5 Portal Virtual Machine Image 5 that is capable of integrating other PhenoMeNal-VMIs (in local federated clouds) and make all functionality available via command-line, Web-APIs, and graphical user interfaces (öffnet in neuem Fenster)

Portal Virtual Machine Image 5 that is capable of integrating other PhenoMeNal-VMIs (in local federated clouds) and make all functionality available via command-line, Web-APIs, and graphical user interfaces

D9.5.3 Updated Services Virtual Machine Image 3 (öffnet in neuem Fenster)

Updated Services Virtual Machine Image 3

D7.4 Process to extract maximum information from sensitive datasets with minimum compromise, in collaboration with BBMRI and BioMedBridges (öffnet in neuem Fenster)

Workflows to extract maximum information from sensitive datasets with minimum compromise, in collaboration with BBMRI and BioMedBridges

D8.2 Modularized ISA model and format: biospecimen centric schema, corresponding xml schemas, reference implementation guidelines and validation rules (öffnet in neuem Fenster)

Modularized ISA model and format: biospecimen centric schema, corresponding xml schemas, reference implementation guidelines and validation rules

D9.3 Report API access to PhenoMeNal Resources (öffnet in neuem Fenster)

Report API access to PhenoMeNal Resources

D4.2 Report describing the activity and output of working groups (öffnet in neuem Fenster)

Establish and convene working groups involving the PhenoMeNal consortium as well as participants in other biomedical infrastructure and research projects. Report describing the activity and output of working groups.

D4.4 Report on State-of-The-Art and Perspectives in the field (öffnet in neuem Fenster)

Report on State-of-The-Art and Perspectives in the field

D4.1Report on requirements for relevant research centers producing and/or consuming metabolomics data with respect to computational aspects, data storage, and infrastructural needs (öffnet in neuem Fenster)

Reporting on requirements expressed/formalised by relevant biomedical infrastructures, both physical and electronic, with regard to data storage, retrieval, exchange, management and analysis.

D8.1 Report on community standards for reporting, access and integrity supported in the PhenoMeNal grid; to be disseminated in a dedicated BioSharing page and via the project website (öffnet in neuem Fenster)

Report on community standards for reporting, access and integrity supported in the PhenoMeNal grid; to be disseminated in a dedicated BioSharing page and via the project website

D9.4 Updated report on existing software tools, workflows and analytical pipelines supported in PhenoMeNal (öffnet in neuem Fenster)

Updated report on existing software tools, workflows and analytical pipelines supported in PhenoMeNal

D9.1 Report on existing software tools, workflows and analytical pipelines initially supported in the PhenoMeNal grid (öffnet in neuem Fenster)

Report on existing software tools, workflows and analytical pipelines initially supported in the PhenoMeNal grid

D7.2 Report on policies and procedures for sensitive human data management (öffnet in neuem Fenster)

Report on policies and procedures for sensitive human data management

D4.3 Consensus agreement document from the working groups (öffnet in neuem Fenster)

Consensus agreement document from the working groups

"D3.3.2 Web-based Tutorial release 2 about ""Metabolomics Data Deposition and Analysis through PhenoMeNal”, in the form of video clips" (öffnet in neuem Fenster)

"Web-based Tutorial release 2 about ""Metabolomics Data Deposition and Analysis through PhenoMeNal”, in the form of video clips"

"D3.3.1 Web-based Tutorial release 1 about ""Metabolomics Data Deposition and Analysis through PhenoMeNal”, in the form of video clips" (öffnet in neuem Fenster)

"Web-based Tutorial release 1 about ""Metabolomics Data Deposition and Analysis through PhenoMeNal”, in the form of video clips"

D6.3 Online user feedback form (öffnet in neuem Fenster)

An Online feedback form will be available for user requests and initiate direct communication with interested parties.

D6.2 PhenoMeNal VRC (static) portal publicly available (öffnet in neuem Fenster)

PhenoMeNal VRC (static) portal publicly available

D6.5 Training and online tutorial for the general use of the PhenoMeNal (öffnet in neuem Fenster)

Training and online tutorial for the general use of the PhenoMeNal

Veröffentlichungen

A design framework and exemplar metrics for FAIRness (öffnet in neuem Fenster)

Autoren: Mark D. Wilkinson, Susanna-Assunta Sansone, Erik Schultes, Peter Doorn, Luiz Olavo Bonino da Silva Santos, Michel Dumontier
Veröffentlicht in: Scientific Data, Ausgabe 5, 2018, Seite(n) 180118, ISSN 2052-4463
Herausgeber: Nature Scientific Data
DOI: 10.1038/sdata.2018.118

From correlation to causation: analysis of metabolomics data using systems biology approaches (öffnet in neuem Fenster)

Autoren: Antonio Rosato, Leonardo Tenori, Marta Cascante, Pedro Ramon De Atauri Carulla, Vitor A. P. Martins dos Santos, Edoardo Saccenti
Veröffentlicht in: Metabolomics, Ausgabe 14/4, 2018, ISSN 1573-3882
Herausgeber: Springer Verlag
DOI: 10.1007/s11306-018-1335-y

The future of metabolomics in ELIXIR (öffnet in neuem Fenster)

Autoren: Van Rijswijk, Merlijn; Beirnaert, Charlie; Caron, Christophe; Cascante, Marta; Dominguez, Victoria; Dunn, Warwick B.; Ebbels, Timothy M. D.; Giacomoni, Franck; Gonzalez-beltran, Alejandra; Hankemeier, Thomas; Haug, Kenneth; Izquierdo-garcia, Jose L.; Jimenez, Rafael C.; Jourdan, Fabien; Kale, Namrata; Klapa, Maria I.; Kohlbacher, Oliver; Koort, Kairi; Kultima, Kim; Le Corguillé, Gildas; Moreno, P
Veröffentlicht in: F1000Research, 6, Ausgabe 8, 2017, ISSN 2046-1402
Herausgeber: F1000 Research Ltd.
DOI: 10.17863/CAM.17780

Bayesian estimation of the number of protonation sites for urinary metabolites from NMR spectroscopic data (öffnet in neuem Fenster)

Autoren: Lifeng Ye, Maria De Iorio, Timothy M. D. Ebbels
Veröffentlicht in: Metabolomics, Ausgabe 14/5, 2018, ISSN 1573-3882
Herausgeber: Springer Verlag
DOI: 10.1007/s11306-018-1351-y

Metabomatching: Using genetic association to identify metabolites in proton NMR spectroscopy (öffnet in neuem Fenster)

Autoren: Rico Rueedi, Roger Mallol, Johannes Raffler, David Lamparter, Nele Friedrich, Peter Vollenweider, Gérard Waeber, Gabi Kastenmüller, Zoltán Kutalik, Sven Bergmann
Veröffentlicht in: PLOS Computational Biology, Ausgabe 13/12, 2017, Seite(n) e1005839, ISSN 1553-7358
Herausgeber: PLOS
DOI: 10.1371/journal.pcbi.1005839

MetExploreViz: web component for interactive metabolic network visualization (öffnet in neuem Fenster)

Autoren: Maxime Chazalviel, Clément Frainay, Nathalie Poupin, Florence Vinson, Benjamin Merlet, Yoann Gloaguen, Ludovic Cottret, Fabien Jourdan
Veröffentlicht in: Bioinformatics, Ausgabe 34/2, 2017, Seite(n) 312-313, ISSN 1367-4803
Herausgeber: Oxford University Press
DOI: 10.1093/bioinformatics/btx588

Bayesian inference for multiple Gaussian graphical models with application to metabolic association networks (öffnet in neuem Fenster)

Autoren: Linda S. L. Tan, Ajay Jasra, Maria De Iorio, Timothy M. D. Ebbels
Veröffentlicht in: The Annals of Applied Statistics, Ausgabe 11/4, 2017, Seite(n) 2222-2251, ISSN 1932-6157
Herausgeber: Institute of Mathematical Statistics
DOI: 10.1214/17-AOAS1076

Deconvoluting interrelationships between concentrations and chemical shifts in urine provides a powerful analysis tool (öffnet in neuem Fenster)

Autoren: Panteleimon G. Takis, Hartmut Schäfer, Manfred Spraul, Claudio Luchinat
Veröffentlicht in: Nature Communications, Ausgabe 8/1, 2017, ISSN 2041-1723
Herausgeber: Nature Publishing Group
DOI: 10.1038/s41467-017-01587-0

Mass spectrometry based metabolomics for in vitro systems pharmacology: pitfalls, challenges, and computational solutions (öffnet in neuem Fenster)

Autoren: Stephanie Herman, Payam Emami Khoonsari, Obaid Aftab, Shibu Krishnan, Emil Strömbom, Rolf Larsson, Ulf Hammerling, Ola Spjuth, Kim Kultima, Mats Gustafsson
Veröffentlicht in: Metabolomics, Ausgabe 13/7, 2017, ISSN 1573-3882
Herausgeber: Springer Verlag
DOI: 10.1007/s11306-017-1213-z

Navigating freely-available software tools for metabolomics analysis (öffnet in neuem Fenster)

Autoren: Spicer, Rachel; Salek, RM; Moreno, P; Cañueto, C; Steinbeck, C
Veröffentlicht in: Metabolomics, Ausgabe 5, 2017, ISSN 1573-3882
Herausgeber: Springer Verlag
DOI: 10.17863/CAM.13427

Plasma and urinary metabolomic profiles of Down syndrome correlate with alteration of mitochondrial metabolism (öffnet in neuem Fenster)

Autoren: Maria Caracausi, Veronica Ghini, Chiara Locatelli, Martina Mericio, Allison Piovesan, Francesca Antonaros, Maria Chiara Pelleri, Lorenza Vitale, Rosa Anna Vacca, Federica Bedetti, Maria Chiara Mimmi, Claudio Luchinat, Paola Turano, Pierluigi Strippoli, Guido Cocchi
Veröffentlicht in: Scientific Reports, Ausgabe 8/1, 2018, ISSN 2045-2322
Herausgeber: Nature Publishing Group
DOI: 10.1038/s41598-018-20834-y

A computational solution to automatically map metabolite libraries in the context of genome scale metabolic networks (öffnet in neuem Fenster)

Autoren: Nils ePaulhe; Benjamin eMerlet; Yoann eGloaguen; Clément eFrainay; Nathalie ePoupin; Fabien eJourdan; Maxime eChazalviel; Florence eVinson; Franck eGiacomoni
Veröffentlicht in: Frontiers in Molecular Biosciences, Vol 3 (2016), Ausgabe 3, 2016, ISSN 2296-889X
Herausgeber: Holtzbrinck Publishing Group
DOI: 10.3389/fmolb.2016.00002

Entropy-Based Network Representation of the Individual Metabolic Phenotype (öffnet in neuem Fenster)

Autoren: Edoardo Saccenti, Giulia Menichetti, Veronica Ghini, Daniel Remondini, Leonardo Tenori, Claudio Luchinat
Veröffentlicht in: Journal of Proteome Research, Ausgabe 15/9, 2016, Seite(n) 3298-3307, ISSN 1535-3893
Herausgeber: American Chemical Society
DOI: 10.1021/acs.jproteome.6b00454

Global open data management in metabolomics (öffnet in neuem Fenster)

Autoren: Kenneth Haug, Reza M Salek, Christoph Steinbeck
Veröffentlicht in: Current Opinion in Chemical Biology, Ausgabe 36, 2017, Seite(n) 58-63, ISSN 1367-5931
Herausgeber: Elsevier BV
DOI: 10.1016/j.cbpa.2016.12.024

Power Analysis and Sample Size Determination in Metabolic Phenotyping (öffnet in neuem Fenster)

Autoren: Benjamin J. Blaise, Gonçalo Correia, Adrienne Tin, J. Hunter Young, Anne-Claire Vergnaud, Matthew Lewis, Jake T. M. Pearce, Paul Elliott, Jeremy K. Nicholson, Elaine Holmes, Timothy M. D. Ebbels
Veröffentlicht in: Analytical Chemistry, Ausgabe 88/10, 2016, Seite(n) 5179-5188, ISSN 0003-2700
Herausgeber: American Chemical Society
DOI: 10.1021/acs.analchem.6b00188

Data standards can boost metabolomics research, and if there is a will, there is a way (öffnet in neuem Fenster)

Autoren: Philippe Rocca-Serra, Reza M. Salek, Masanori Arita, Elon Correa, Saravanan Dayalan, Alejandra Gonzalez-Beltran, Tim Ebbels, Royston Goodacre, Janna Hastings, Kenneth Haug, Albert Koulman, Macha Nikolski, Matej Oresic, Susanna-Assunta Sansone, Daniel Schober, James Smith, Christoph Steinbeck, Mark R. Viant, Steffen Neumann
Veröffentlicht in: Metabolomics, Ausgabe 12/1, 2016, ISSN 1573-3882
Herausgeber: Springer Verlag
DOI: 10.1007/s11306-015-0879-3

Workflow for Integrated Processing of Multicohort Untargeted 1 H NMR Metabolomics Data in Large-Scale Metabolic Epidemiology (öffnet in neuem Fenster)

Autoren: Ibrahim Karaman, Diana L. S. Ferreira, Claire L. Boulangé, Manuja R. Kaluarachchi, David Herrington, Anthony C. Dona, Raphaële Castagné, Alireza Moayyeri, Benjamin Lehne, Marie Loh, Paul S. de Vries, Abbas Dehghan, Oscar H. Franco, Albert Hofman, Evangelos Evangelou, Ioanna Tzoulaki, Paul Elliott, John C. Lindon, Timothy M. D. Ebbels
Veröffentlicht in: Journal of Proteome Research, Ausgabe 15/12, 2016, Seite(n) 4188-4194, ISSN 1535-3893
Herausgeber: American Chemical Society
DOI: 10.1021/acs.jproteome.6b00125

MIDcor, an R-program for deciphering mass interferences in mass spectra of metabolites enriched in stable isotopes (öffnet in neuem Fenster)

Autoren: Vitaly A. Selivanov, Adrián Benito, Anibal Miranda, Esther Aguilar, Ibrahim Halil Polat, Josep J. Centelles, Anusha Jayaraman, Paul W. N. Lee, Silvia Marin, Marta Cascante
Veröffentlicht in: BMC Bioinformatics, Ausgabe 18/1, 2017, ISSN 1471-2105
Herausgeber: BioMed Central
DOI: 10.1186/s12859-017-1513-3

The Ontology for Biomedical Investigations (öffnet in neuem Fenster)

Autoren: Anita Bandrowski, Ryan Brinkman, Mathias Brochhausen, Matthew H. Brush, Bill Bug, Marcus C. Chibucos, Kevin Clancy, Mélanie Courtot, Dirk Derom, Michel Dumontier, Liju Fan, Jennifer Fostel, Gilberto Fragoso, Frank Gibson, Alejandra Gonzalez-Beltran, Melissa A. Haendel, Yongqun He, Mervi Heiskanen, Tina Hernandez-Boussard, Mark Jensen, Yu Lin, Allyson L. Lister, Phillip Lord, James Malone, Elisabe
Veröffentlicht in: PLOS ONE, Ausgabe 11/4, 2016, Seite(n) e0154556, ISSN 1932-6203
Herausgeber: Public Library of Science
DOI: 10.1371/journal.pone.0154556

KODAMA: an R package for knowledge discovery and data mining (öffnet in neuem Fenster)

Autoren: Stefano Cacciatore, Leonardo Tenori, Claudio Luchinat, Phillip R. Bennett, David A. MacIntyre
Veröffentlicht in: Bioinformatics, 2016, Seite(n) btw705, ISSN 1367-4803
Herausgeber: Oxford University Press
DOI: 10.1093/bioinformatics/btw705

Gelified Biofluids for High-Resolution Magic Angle Spinning 1 H NMR Analysis: The Case of Urine (öffnet in neuem Fenster)

Autoren: Panteleimon G. Takis, Leonardo Tenori, Enrico Ravera, Claudio Luchinat
Veröffentlicht in: Analytical Chemistry, Ausgabe 89/2, 2017, Seite(n) 1054-1058, ISSN 0003-2700
Herausgeber: American Chemical Society
DOI: 10.1021/acs.analchem.6b04318

Suche nach OpenAIRE-Daten ...

Bei der Suche nach OpenAIRE-Daten ist ein Fehler aufgetreten

Es liegen keine Ergebnisse vor

Mein Booklet 0 0