European Commission logo
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS

The Diamond Revolution in Hyperpolarized MR Imaging – Novel Platform and Nanoparticle Targeted Probe

Cel

Non-invasively imaging small numbers of molecular probes, to help image particular targets or pathways in vivo, is currently undergoing a technological revolution. Recent breakthroughs in molecular hyperpolarization proved > 10,000-fold increase in sensitivity on conventional magnetic resonance imaging (MRI) systems, thus providing insight into previously unseen metabolic processes with enormous potential for socioeconomic relevant diseases. E.g. pyruvate-based hyperpolarized imaging was clinically demonstrated to be effective for prostate cancer diagnostics in human patients. However, the current state-of-the-art hyperpolarization methods are expensive and cumbersome, limiting the access to hyperpolarization technology, and require long hyperpolarization times of 60-90 minutes per dosage; hyperpolarization probes exhibit short hyperpolarization duration (1-5 minutes), limiting the usage of hyperpolarization to metabolic imaging. A quantum technological breakthrough, Nitrogen-Vacancy defects (NV centres) in diamonds, is set to revolutionize the field of hyperpolarization for both hyperpolarizer and probes.
The primary objective of HYPERDIAMOND is the development and commercialization of two new molecular imaging technologies for sensitive diagnosis and treatment monitoring, based on NV centres:
The Diamond Hyperpolarizer will offer a cost- and time-effective solution for hyperpolarization that easily fits current MRI layouts, hyperpolarizes within 5 minutes, and improves clinical viability. The Nano-diamond (ND) Probe will introduce the first targeted MRI probe capable of achieving comparable molecular sensitivity to positron emission tomography (PET) with MRI systems, exhibiting extremely long hyperpolarization duration (~1 hour), and enabling non-metabolic hyperpolarized imaging.
HYPERDIAMOND will bridge the gap between novel quantum and nanotechnology and their applications in hyperpolarized imaging, producing innovation not feasible with current technology.

Zaproszenie do składania wniosków

H2020-PHC-2014-2015

Zobacz inne projekty w ramach tego zaproszenia

Szczegółowe działanie

H2020-PHC-2015-two-stage

Koordynator

UNIVERSITAET ULM
Wkład UE netto
€ 1 233 863,23
Adres
HELMHOLTZSTRASSE 16
89081 Ulm
Niemcy

Zobacz na mapie

Region
Baden-Württemberg Tübingen Ulm, Stadtkreis
Rodzaj działalności
Higher or Secondary Education Establishments
Linki
Koszt całkowity
€ 1 233 863,23

Uczestnicy (13)