Projektbeschreibung
Eine universelle topologische Feldtheorie mit Werten in Graphenkomplexen
Die Topologie, historisch gesehen ein Thema der Mathematik, hat mit der Entdeckung topologischer Materialien und den Fortschritten beim Zugang zu topologischen Zuständen der Materie einen entscheidenden praktischen Wert und erheblich an Interesse gewonnen. Das vom Europäischen Forschungsrat finanzierte Projekt GRAPHCPX zielt darauf ab, eine universelle topologische Feldtheorie mit Werten in Graphenkomplexen zu formulieren, die Bereiche der mathematischen Physik, Topologie, homologischen Algebra und algebraischen Geometrie vereint. Im Rahmen des Projekts könnten eine präzise topologische Interpretation einer Klasse von gut untersuchten topologischen Feldtheorien, neue Werkzeuge zur Untersuchung von Objekten wie Konfigurations- und Einbettungsräumen und möglicherweise Diffeomorphismengruppen sowie eine Fülle neuer algebraischer Strukturen auf Graphenkomplexen, die zu den wichtigsten Objekten in diesem Bereich gehören, hervorgebracht werden.
Ziel
The goal of the proposed project is to create a universal (AKSZ type) topological field theory with values in graph complexes, capturing the rational homotopy types of manifolds, configuration and embedding spaces.
If successful, such a theory will unite certain areas of mathematical physics, topology, homological algebra and algebraic geometry. More concretely, from the physical viewpoint it would give a precise topological interpretation of a class of well studied topological field theories, as opposed to the current state of the art, in which these theories are defined by giving formulae without guarantees on the non-triviality of the produced invariants.
From the topological viewpoint such a theory will provide new tools to study much sought after objects like configuration and embedding spaces, and tentatively also diffeomorphism groups, through small combinatorial models given by Feynman diagrams. In particular, this will unite and extend existing graphical models of configuration and embedding spaces due to Kontsevich, Lambrechts, Volic, Arone, Turchin and others.
From the homological algebra viewpoint a field theory as above provides a wealth of additional algebraic structures on the graph complexes, which are some of the most central and most mysterious objects in the field.
Such algebraic structures are expected to yield constraints on the graph cohomology, as well as ways to construct series of previously unknown classes.
Wissenschaftliches Gebiet (EuroSciVoc)
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: https://op.europa.eu/de/web/eu-vocabularies/euroscivoc.
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: https://op.europa.eu/de/web/eu-vocabularies/euroscivoc.
- Naturwissenschaften Mathematik angewandte Mathematik mathematische Physik
- Naturwissenschaften Mathematik reine Mathematik Topologie algebraische Topologie
- Naturwissenschaften Mathematik reine Mathematik Geometrie
- Naturwissenschaften Mathematik reine Mathematik Algebra algebraische Geometrie
Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen
Wir bitten um Entschuldigung ... während der Ausführung ist ein unerwarteter Fehler aufgetreten.
Sie müssen sich authentifizieren. Ihre Sitzung ist möglicherweise abgelaufen.
Vielen Dank für Ihr Feedback. Sie erhalten in Kürze eine E-Mail zur Übermittlungsbestätigung. Wenn Sie sich für eine Benachrichtigung über den Berichtsstatus entschieden haben, werden Sie auch im Falle einer Änderung des Berichtsstatus benachrichtigt.
Programm/Programme
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
HAUPTPROGRAMM
Alle im Rahmen dieses Programms finanzierten Projekte anzeigen
Thema/Themen
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Finanzierungsplan
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
ERC-STG - Starting Grant
Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen
Aufforderung zur Vorschlagseinreichung
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
(öffnet in neuem Fenster) ERC-2015-STG
Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigenGastgebende Einrichtung
Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.
8092 Zuerich
Schweiz
Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.