Opis projektu
Uniwersalna topologiczna teoria pola z wartościami w zbiorach grafów
Topologia, która w konwencjonalnej nauce należała do dziedzin matematyki, z czasem nabrała znacznie większego znaczenia praktycznego – doprowadziły do tego odkrycia materiałów topologicznych oraz postępy w uzyskiwaniu topologicznych stanów materii, co przełożyło się na wzrost zainteresowania naukowego. Zespół finansowanego ze środków Europejskiej Rady ds. Badań Naukowych projektu GRAPHCPX zamierza opracować uniwersalną topologiczną teorię pola obejmującą wartości w zbiorach grafów, łącząc tym samym dziedziny fizyki matematycznej, topologii, algebry homologicznej i geometrii algebraicznej. Rezultaty projektu obejmą precyzyjną topologicznie interpretację klasy dobrze zbadanych topologicznych teorii pola, nowe narzędzia pozwalające na badanie obiektów takich jak przestrzenie konfiguracji i zanurzania oraz grup dyfeomorfizmów, a także szereg nowych struktur algebraicznych opartych na zespołach grafów należących do najważniejszych obiektów w tej dziedzinie.
Cel
The goal of the proposed project is to create a universal (AKSZ type) topological field theory with values in graph complexes, capturing the rational homotopy types of manifolds, configuration and embedding spaces.
If successful, such a theory will unite certain areas of mathematical physics, topology, homological algebra and algebraic geometry. More concretely, from the physical viewpoint it would give a precise topological interpretation of a class of well studied topological field theories, as opposed to the current state of the art, in which these theories are defined by giving formulae without guarantees on the non-triviality of the produced invariants.
From the topological viewpoint such a theory will provide new tools to study much sought after objects like configuration and embedding spaces, and tentatively also diffeomorphism groups, through small combinatorial models given by Feynman diagrams. In particular, this will unite and extend existing graphical models of configuration and embedding spaces due to Kontsevich, Lambrechts, Volic, Arone, Turchin and others.
From the homological algebra viewpoint a field theory as above provides a wealth of additional algebraic structures on the graph complexes, which are some of the most central and most mysterious objects in the field.
Such algebraic structures are expected to yield constraints on the graph cohomology, as well as ways to construct series of previously unknown classes.
Dziedzina nauki (EuroSciVoc)
Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: https://op.europa.eu/pl/web/eu-vocabularies/euroscivoc.
Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: https://op.europa.eu/pl/web/eu-vocabularies/euroscivoc.
- nauki przyrodnicze matematyka matematyka stosowana fizyka matematyczna
- nauki przyrodnicze matematyka matematyka czysta topologia topologia algebraiczna
- nauki przyrodnicze matematyka matematyka czysta geometria
- nauki przyrodnicze matematyka matematyka czysta algebra geometria algebraiczna
Aby użyć tej funkcji, musisz się zalogować lub zarejestrować
Przepraszamy… podczas wykonywania operacji wystąpił nieoczekiwany błąd.
Wymagane uwierzytelnienie. Powodem może być wygaśnięcie sesji.
Dziękujemy za przesłanie opinii. Wkrótce otrzymasz wiadomość e-mail z potwierdzeniem zgłoszenia. W przypadku wybrania opcji otrzymywania powiadomień o statusie zgłoszenia, skontaktujemy się również gdy status ulegnie zmianie.
Program(-y)
Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.
Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
GŁÓWNY PROGRAM
Wyświetl wszystkie projekty finansowane w ramach tego programu
Temat(-y)
Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.
Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.
System finansowania
Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.
Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.
ERC-STG - Starting Grant
Wyświetl wszystkie projekty finansowane w ramach tego programu finansowania
Zaproszenie do składania wniosków
Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.
Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.
(odnośnik otworzy się w nowym oknie) ERC-2015-STG
Wyświetl wszystkie projekty finansowane w ramach tego zaproszeniaInstytucja przyjmująca
Kwota netto dofinansowania ze środków Unii Europejskiej. Suma środków otrzymanych przez uczestnika, pomniejszona o kwotę unijnego dofinansowania przekazanego powiązanym podmiotom zewnętrznym. Uwzględnia podział unijnego dofinansowania pomiędzy bezpośrednich beneficjentów projektu i pozostałych uczestników, w tym podmioty zewnętrzne.
8092 Zuerich
Szwajcaria
Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.