Cel The project addresses the long-term vision of man-made materials with chemical selectivity and functional efficiency produced by dynamic structural flexibility. These materials are not intended as protein mimics; they are however inspired by nature’s use of flexible rather than rigid systems, with their ability to dynamically restructure around guests and thus perform highly specific chemistry. Such materials would transform chemical processes through their precision, for example by reorganising to accelerate each step of a cascade reaction without reagent or product inhibition. The road to this vision is blocked as we do not have the methodology and understanding to control such materials.The aim is to develop synergic, multidisciplinary experimental and computational capability to harness the dynamics of flexible crystalline porous solids for function, demonstrated in separation and catalysis. This will enable design and synthesis of materials that controllably adopt distinct structures according to their chemical environment to optimise performance. We will create a new workflow that integrates understanding of the structure-composition-dynamics-property relationship into the materials design and discovery process. This workflow builds on proof-of-concept in (i) chemical control of dynamical restructuring in flexible crystalline porous materials and in the use of dynamics to (ii) enhance function and (iii) guide synthesis.Crystalline flexible porous materials are selected because crystallinity maximises the atomic-scale understanding generated, which is transferable to other materials classes, whilst porosity permits sorption and organisation of guests that controls function.This inorganic materials chemistry project develops integrated capability in chemical synthesis (new metal-organic frameworks and linkers), computation (prediction and evaluation of structure and dynamical guest response), characterisation (e.g. by diffraction) and measurement of function. Dziedzina nauki inżynieria i technologiainżynieria materiałowakryształynauki przyrodniczenauki biologicznebiochemiabiocząsteczkiwęglowodanynauki przyrodniczenauki chemicznekatalizanauki przyrodniczenauki chemicznechemia organicznaaminynauki przyrodniczenauki biologicznebiochemiabiocząsteczkibiałkaenzymy Słowa kluczowe DYNAPORE Program(-y) H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC) Main Programme Temat(-y) ERC-ADG-2015 - ERC Advanced Grant Zaproszenie do składania wniosków ERC-2015-AdG Zobacz inne projekty w ramach tego zaproszenia System finansowania ERC-ADG - Advanced Grant Koordynator THE UNIVERSITY OF LIVERPOOL Wkład UE netto € 2 493 425,00 Adres Brownlow hill 765 foundation building L69 7ZX Liverpool Zjednoczone Królestwo Zobacz na mapie Region North West (England) Merseyside Liverpool Rodzaj działalności Higher or Secondary Education Establishments Linki Kontakt z organizacją Opens in new window Strona internetowa Opens in new window Uczestnictwo w unijnych programach w zakresie badań i innowacji Opens in new window sieć współpracy HORIZON Opens in new window Środki z innych źródeł € 0,00 Beneficjenci (1) Sortuj alfabetycznie Sortuj według wkładu UE netto Rozwiń wszystko Zwiń wszystko THE UNIVERSITY OF LIVERPOOL Zjednoczone Królestwo Wkład UE netto € 2 493 425,00 Adres Brownlow hill 765 foundation building L69 7ZX Liverpool Zobacz na mapie Region North West (England) Merseyside Liverpool Rodzaj działalności Higher or Secondary Education Establishments Linki Kontakt z organizacją Opens in new window Strona internetowa Opens in new window Uczestnictwo w unijnych programach w zakresie badań i innowacji Opens in new window sieć współpracy HORIZON Opens in new window Środki z innych źródeł € 0,00