European Commission logo
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS

Critical Raw materials Elimination by a top-down Approach To hydrogen and Electricity generation

Cel

CREATE aims at developing innovative membrane electrode assemblies for low-temperature polymer-electrolyte fuel cell (FC) and electrolyzer (EL) with much reduced cost. This will be achieved via elimination or drastic reduction of critical raw materials in their catalysts, in particular platinum group metals (PGM).

Key issues with present low-temperature FC & EL are the high contents of PGM in devices based on proton-exchange-membrane (PEM) and the need for liquid electrolytes in alkaline FC and EL. To overcome this, we will shift from PEM-based cells to 1) pure anion-conducting polymer-electrolytes and 2) to bipolar-membrane polymer electrolytes. The latter comprises anion and proton conducting ionomers and a junction. Bipolar membranes allow adapting the pH at each electrode, thereby opening the door to improved performance or PGM-free catalysts. Both strategies carry the potentiality to eliminate or drastically reduce the need for PGM while maintaining the advantages of PEM-based devices.

In strategy 1, novel anion-exchange ionomers and membranes will be developed and interfaced with catalysts based on Earth-abundant metal oxides or metal-carbon composites for the oxygen reactions, and with ultralow PGM or PGM-free catalysts for the hydrogen reactions.

In strategy 2, novel bipolar membrane designs, or designs unexplored for FC & EL, will be developed and interfaced with catalysts for the oxygen reactions (high pH side of the bipolar membrane) and with catalysts for the hydrogen reactions (low pH side). The ionomers and oxygen reaction catalysts developed in strategy 1 will be equally useful for strategy 2, while identified PGM-free and ultralow-PGM catalysts will be implemented for the hydrogen reactions on the acidic side.

Polymer-electrolyte FC & EL based on those concepts will be evaluated for targeted applications, i.e. photovoltaic electricity storage, off-grid back-up power and H2 production. The targeted market is distributed small-scale systems.

Zaproszenie do składania wniosków

H2020-NMBP-2016-2017

Zobacz inne projekty w ramach tego zaproszenia

Szczegółowe działanie

H2020-NMBP-2016-two-stage

Koordynator

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Wkład UE netto
€ 552 859,54
Adres
RUE MICHEL ANGE 3
75794 Paris
Francja

Zobacz na mapie

Region
Ile-de-France Ile-de-France Paris
Rodzaj działalności
Research Organisations
Linki
Koszt całkowity
€ 598 123,52

Uczestnicy (11)