Skip to main content
European Commission logo print header

Biofunctionalised Electroconducting Microfibres for the Treatment of Spinal Cord Injury

Obiettivo

Bio-electronic microsystems hold promise for repairing the damaged central nervous system (CNS). However, this potential has not been developed because their implantation inflicts additional neural injury, and ensuing inflammation and fibrosis compromise device functionality. In Neurofibres we want to achieve a breakthrough in “Neuroregenerative Bio-electronics”, developing dual-function devices that will serve as electroactive scaffolds for CNS regeneration and neural circuit activation. We engineered electroconducting microfibres (MFs) that add negligible tissue insult while promoting guided cell migration and axonal regeneration in rodents with spinal cord injury (SCI). The MFs also meet the challenge of probe miniaturisation and biofunctionalisation for ultrasensitive recording and stimulation of neural activity. An interdisciplinary consortium composed of neuroscientists, medical specialists, researchers in biomaterials, protein engineering, physics, and electrical and mechanical engineering, together with a company specialised in fabrication of microcables and microconnectors, will join efforts to design, develop, and test the MFs and complementary technology (microfibre functionalisation, assembling, and electronic interconnection), in order to produce a biologically safe and effective bio-electronic system for the treatment of SCI. This goal will be achieved through five specific objectives:
1) To improve the electrical conductivity, strength, and chemical stability of the microfibres.
2) To develop electro-responsive engineered affibodies for microfibre functionalisation.
3) To develop the technology for MF interconnection and assembling into implantable systems.
4) To perform comprehensive investigation of the immunological, glial, neuronal, and connective tissue responses to the implanted MFs and applied electrostimulation in rodent and swine SCI models.
5) To investigate the motor and sensory effects of microfibre implantation and electrostimulation.

Invito a presentare proposte

H2020-FETPROACT-2016-2017

Vedi altri progetti per questo bando

Bando secondario

FETPROACT-2016

Meccanismo di finanziamento

RIA - Research and Innovation action
æ

Coordinatore

SERVICIO DE SALUD DE CASTILLA LA MANCHA
Contribution nette de l'UE
€ 951 835,00
Indirizzo
Avenida rio guadiana 4
45007 Toledo
Spagna

Mostra sulla mappa

Regione
Centro (ES) Castilla-La Mancha Toledo
Tipo di attività
Public bodies (excluding Research Organisations and Secondary or Higher Education Establishments)
Collegamenti
Altri finanziamenti
€ 582 008,75

Partecipanti (6)