CORDIS fornisce collegamenti ai risultati finali pubblici e alle pubblicazioni dei progetti ORIZZONTE.
I link ai risultati e alle pubblicazioni dei progetti del 7° PQ, così come i link ad alcuni tipi di risultati specifici come dataset e software, sono recuperati dinamicamente da .OpenAIRE .
Risultati finali
A website uniquely dedicated to the APOLO project will be designed and launched acting as central source for project information, description, objectives, updates, latest developments as well as links to relevant pages, dissemination activities and other events valuable to the APOLO project and its stakeholders. Means of verification: online installation of public and private website in the domain www.n-track.eu. Indicator: uptime - objective 99,9% of time.
Workshop about standardization issues related to Perovskites based PV technologies (in connection with OE-A and EU Platform PV (si apre in una nuova finestra)Event organized around standards in PV and PSC with OEA Organic Electronic Association Photonics 21 EU Platform PV in association with standardization committees as CENELEC or CEN Means of verification organisation of event targeting experts in standardisation in the PV sector Indicator number of participants objective 20
Summer School on PSC technology (si apre in una nuova finestra)The school will expect the participation of graduate and postdocs students that also can present their research in PSC technology through oral and poster sessions gathering senior and junior researchers to foster information trespassing and motivate young researchers in the field Means of verification organisation of training event targeting students Indicator number of participants objective 15
Public report of antisoiling layer formulation and application methodology This deliverable will present the different formulations developed and applied based on both grafting or coating methodologies and the results obtained in terms of antisoiling and antistatic capacities as the effect over previous layers and over the cell morphology Means of verification antisoiling performance will be experimentally verified in WP2 determining optical and antistatic properties and in WP5 on fabricated cells using antisoiling coatings Indicator transmittance contact angle and surface resistance of antisoiling coating KPI6 objective transmittance 93 contact angle 110o surface resistance reduction 102 Ohm from SoA PV glass and 10 less of soiling deposition
Green solvents definition for APOLO cells (si apre in una nuova finestra)Public report of perovskites Green Solvent Engineering results It will present the results obtained in each step Hansen solvent parameters of perovskites precursors green solvent selection dissolution studies and perovskite formation step studies It will also present an optimal ink formulation for perovskite formation Means of verification perovskite formation using selected green solvents will be monitorized via structural characterization Besides in WP4 cells with greensolvent perovskites will be developed and their performance tested LCA study in WP6 will evaluate the impact reduction Indicator PSC performance KPI1 CMR Carcinogenic Mutagenic or Toxic for Reproduction solvent category and environmental impact objective performance of PSC using selected green solvent over threshold 22 No CMR categories 1A 1B or 2 solvents used Environmental impact reduction of 10 minimum
Final recommendations to relevant standardization groups and implementation to the IEC standard roadmap (si apre in una nuova finestra)The specificities of Perovskites PV technologies regarding existing standards in other PV technologies thin film PV or cSilicon PV or to completely different applications mechanical bending gas barrier measurements for packaging etc will be highlighted The resulting recommendations for future standards adapted to Perovskites PV particularly regarding aging electrical measurements component and recycling will be communicated to standardization groups TC119 or other groups existing working groups in OEA etc in order to be implemented to the IEC standard roadmap Means of verification final report on recommendations will be communicate to standardization groups Indicator guide line for APOLO technologies standardization objective guide line defined
Open Day Workshop I (si apre in una nuova finestra)An Open Day workshop dedicated to dissemination activities will support further engagement and creation of Open Innovation community related to APOLO project results Means of verification organisation of dissemination event targeting industries to present projects results Indicator number of participants objective 50
Open Day Workshop II (si apre in una nuova finestra)An Open Day workshop dedicated to dissemination and exploitation activities will support further engagement with mapped stakeholders and possible endusers of APOLO project results Means of verification organisation of dissemination event targeting industries to present projects results Indicator number of participants objective 50
Optimized optical design of photonic structures for transparent and opaque substrates (si apre in una nuova finestra)"This deliverable will present the optimum set of geometrical parameters of the photonic micro-structures that will be patterned on both types of PSC substrates, taking only into account the optical performance of the devices by focusing on the maximization of their generated photocurrent for a range of different thicknesses (~250-500 nm) of the absorber layer. Means of verification: the modeled benefits of implementing the optimized photonic structures in the cells will be experimentally verified in WP4 by comparing the fabricated cells with reference devices (MS2). Indicator: absorber layer thickness (KPI#4) – objective: cells between 250-500 nm thick with good performance."
Micro-structured substrates for LT, with the optimized parameters indicated by the modelling tasks (WP3), uniformly patterned over large-areas (>10 cm2) (si apre in una nuova finestra)This deliverable will show the fabrication of transparent and opaque flexible substrates containing an area of 10 cm2 uniformly patterned by a longrange ordered hexagonal array of microcavities with the dimensions determined in WP3 Such photonic structure will be patterned via a scalable and lowcost softlithography method that combines a colloidal lithography technique to fabricate the stamps with a hotembossing process to imprint on the substrates Means of verification the benefits of the implementation of optimized LT structures will be experimentally verified in WP4 by comparing the fabricated cells with reference devices Indicator PSC performance KPI1 objective PSC cells with efficiency 22
Intermediate report about advanced characterization and protocols for optimal optoelectronic (si apre in una nuova finestra)In this deliverable the results of the characterization of PSCs devices developed in WP2 and WP4 with advanced techniques will be presented Means of verification there will be an interaction loop between the results of characterization and the material development tasks to guarantee the performance targets Indicator performance of PSC KPI1 objective Characterization of PSC with at least 20 in efficiency in rigid substrates and 15 in flexible substrates
Report about advanced characterization and protocols for optimal optoelectronic measurements (si apre in una nuova finestra)In this deliverable a micro and macroscale characterization of perovskite layers and complete devices will be performed The outcome of the analysis will be used for solar cell improvement High accuracy measurements of electrical device parameters will also be presented Means of verification there will be a interaction loop between the results of characterization and the material development tasks to guarantee the performance targets Indicator performance of PSC KPI1 objective PSC with more than 23 in efficiency in rigid substrates
Improved Charge Transport Materials, Perovskite Absorber and Passivation Strategy (si apre in una nuova finestra)The deliverable will present the advances made by partners towards the development of improved charge transport materials perovskite absorber and passivation strategies The report will be disseminated among the partners and will include published data relevant to the APOLO project Means of verification the advances in the development of transport and absorber layers will be experimentally verified in WP2 measuring the optoelectronic properties and in WP5 with stability test of the fabricated PSC Indicator PSC performance KPI1 2 and 3 and stability of the PSC KPI5 objective PSC with more than 23 in efficiency in rigid substrates and less than 10 of losses in efficiency after 1000h of accelerated aging
This deliverable will present the set of physical properties (composition, layer thickness, etc.) of the encapsulation materials that can allow achieving the specified stability targets for the PSC modules. This will be performed via a semi-empirical study that will determine the deterioration rates of the various constituents of the devices and the consequent design of the best sealing layers that can minimize such degradation in ambient conditions. Means of verification: the encapsulation parameters will be experimentally verified in WP5 with stability test of PSC and modules. Indicator: stability – objective: 90% of the initial efficiency after 1000h of accelerated aging.
Opto-electronic model of optimal LT-enhanced PSCs, with at least 22% efficiency, on transparent and opaque substrates (si apre in una nuova finestra)"This deliverable will complement the work presented in D3.1 by determining the optimum sets of parameters of both the photonic elements and the PSC layer structure that maximize the device efficiency with a minimum Perovskite absorber thickness, now considering the full optical and electrical performance of the cells.This will guide the following experimental development of highly flexible PSC cells with efficiency >22%. Means of verification: the modeled benefits of implementing the optimized opto-electronic structures in the cells will be experimentally verified in WP4 by comparing the fabricated cells with reference devices. Indicator: PSc performance (KPI#1) – objective: PSC cells with efficiency >22%. "
Design of PSC module with optimized cells interconnection and LT strategy, for maximum stabilized efficiency (si apre in una nuova finestra)"This deliverable will present the architecture of the optimum module structures for PSC device integration, showing the best possible configurations for the solar cells active areas,inter-cells spacing, and intra and inter-cell circuitry the modules. This study will also indicate the minimum bending radii of the flexible modules without affecting their performance. Means of verification: the optimized design for the module will be evaluated experimentally in the module manufacturing task in WP4. Indicator: Module performance and bending radius (KPI#7 and 9) – objective: Flexible module with 5 mm of bending radius and 17% in efficiency."
Pubblicazioni
Autori:
Francesca De Rossi, Giacomo Renno, Babak Taheri, Narges Yaghoobi Nia, Viktoria Ilieva, Andrea Fin, Aldo Di Carlo, Matteo Bonomo, Claudia Barolo, Francesca Brunetti
Pubblicato in:
Journal of Power Sources, Numero 494, 2021, Pagina/e 229735, ISSN 0378-7753
Editore:
Elsevier BV
DOI:
10.1016/j.jpowsour.2021.229735
Autori:
Sirazul Haque, Miguel Alexandre, Manuel J. Mendes, Hugo Águas, Elvira Fortunato, Rodrigo Martins
Pubblicato in:
Applied Materials Today, Numero 20, 2020, Pagina/e 100720, ISSN 2352-9407
Editore:
Elsevier
DOI:
10.1016/j.apmt.2020.100720
Autori:
Dkhili, M., Lucarelli, G., De Rossi, F., Taheri, B., Hammedi, K., Ezzaouia, H., Brunetti, F., Brown, T.M.
Pubblicato in:
ACS Applied Energy Materials, Numero 25740962, 2022, Pagina/e 4096–4107, ISSN 2574-0962
Editore:
American Chemical Society
DOI:
10.1021/acsaem.1c03311
Autori:
Zarabinia, N., Lucarelli, G., Rasuli, R., De Rossi, F., Taheri, B., Javanbakht, H., Brunetti, F., Brown, T.M.
Pubblicato in:
iScience, Numero 25890042, 2022, Pagina/e art. no. 103712, ISSN 2589-0042
Editore:
Elsevier Inc.
DOI:
10.1016/j.isci.2021.103712
Autori:
Castriotta, L.A., Fuentes Pineda, R., Babu, V., Spinelli, P., Taheri, B., Matteocci, F., Brunetti, F., Wojciechowski, K., Di Carlo, A.
Pubblicato in:
ACS Applied Materials and Interfaces, Numero 19448244, 2021, Pagina/e 29576-29584, ISSN 1944-8244
Editore:
American Chemical Society
DOI:
10.1021/acsami.1c05506
Autori:
Jan Herterich,Clemens Baretzky,Moritz Unmüssig,Clément Maheu,Nico Glissmann,Jeremias Gutekunst,Georgios Loukeris,Thomas Mayer,Markus Kohlstädt,Jan P. Hofmann,Uli Würfel
Pubblicato in:
Solar RRL, Numero 6, 2022, Pagina/e 2200195, ISSN 2367-198X
Editore:
Wiley
DOI:
10.1002/solr.202200195
Autori:
Matteo Bonomo, Babak Taheri, Luca Bonandini, Sergio Castro-Hermosa, Thomas M. Brown, Marco Zanetti, Alberto Menozzi, Claudia Barolo, Francesca Brunetti
Pubblicato in:
ACS Applied Materials & Interfaces, Numero 12/49, 2020, Pagina/e 54862-54875, ISSN 1944-8244
Editore:
American Chemical Society
DOI:
10.1021/acsami.0c17652
Autori:
Salma Zouhair, Bin Luo, Dmitry Bogachuk, David Martineau, Lukas Wagner, Adil Chahboun, Stefan W. Glunz, Andreas Hinsch
Pubblicato in:
Solar RRL, Numero 2367198X, 2022, Pagina/e 2100745, ISSN 2367-198X
Editore:
Wiley
DOI:
10.1002/solr.202100745
Autori:
Sergio Castro-Hermosa, Giulia Lucarelli, Michiel Top, Matthias Fahland, John Fahlteich, Thomas M. Brown
Pubblicato in:
Cell Reports Physical Science, Numero 1/5, 2020, Pagina/e 100045, ISSN 2666-3864
Editore:
Elsevier
DOI:
10.1016/j.xcrp.2020.100045
Autori:
Gayathri Mathiazhagan, Lukas Wagner, Shankar Bogati, Kübra Yasaroglu Ünal, Dmitry Bogachuk, Thomas Kroyer, Simone Mastroianni, Andreas Hinsch
Pubblicato in:
ACS Applied Nano Materials, Numero 3/3, 2020, Pagina/e 2463-2471, ISSN 2574-0970
Editore:
American Chemical Society
DOI:
10.1021/acsanm.9b02563
Autori:
Haque, S., Alexandre, M., Baretzky, C., Rossi, D., De Rossi, F., Vicente, A.T., Brunetti, F., Águas, H., Ferreira, R.A.S., Fortunato, E., Auf Der Maur, M., Würfel, U., Martins, R., Mendes, M.J.
Pubblicato in:
ACS Photonics, Numero 9 (7), 2022, Pagina/e 2408-2421, ISSN 2330-4022
Editore:
American Chemical Society
DOI:
10.1021/acsphotonics.2c00446
Autori:
Taheri, B., De Rossi, F., Lucarelli, G., Castriotta, L.A., Di Carlo, A., Brown, T.M., Brunetti, F.
Pubblicato in:
ACS Applied Energy Materials, Numero 25740962, 2021, Pagina/e 4507-4518, ISSN 2574-0962
Editore:
American Chemical Society
DOI:
10.1021/acsaem.1c00140
Autori:
De Rossi, F., Taheri, B., Bonomo, M., Gupta, V., Renno, G., Yaghoobi Nia, N., Rech, P., Frost, C., Cazzaniga, C., Quagliotto, P., Di Carlo, A., Barolo, C., Ottavi, M., Brunetti, F.
Pubblicato in:
Nano Energy, Numero 22112855, 2022, ISSN 2211-2855
Editore:
Elsevier BV
DOI:
10.1016/j.nanoen.2021.106879
Autori:
Sergio Castro‐Hermosa, Michiel Top, Janardan Dagar, John Fahlteich, Thomas M. Brown
Pubblicato in:
Advanced Electronic Materials, Numero 5/10, 2019, Pagina/e 1800978, ISSN 2199-160X
Editore:
Wiley
DOI:
10.1002/aelm.201800978
Autori:
Miguel Alexandre, Manuel Chapa, Sirazul Haque, Manuel J. Mendes, Hugo Águas, Elvira Fortunato, Rodrigo Martins
Pubblicato in:
ACS Applied Energy Materials, Numero 2/4, 2019, Pagina/e 2930-2938, ISSN 2574-0962
Editore:
American Chemical Society
DOI:
10.1021/acsaem.9b00271
Autori:
Janardan Dagar, Sergio Castro-Hermosa, Giulia Lucarelli, Andrea Zampetti, Franco Cacialli, Thomas M. Brown
Pubblicato in:
IEEE Journal of Photovoltaics, Numero 9/5, 2019, Pagina/e 1309-1315, ISSN 2156-3381
Editore:
IEEE Electron Devices Society
DOI:
10.1109/jphotov.2019.2928466
Autori:
Sirazul Haque, Manuel J. Mendes, Olalla Sanchez-Sobrado, Hugo Águas, Elvira Fortunato, Rodrigo Martins
Pubblicato in:
Nano Energy, Numero 59, 2019, Pagina/e 91-101, ISSN 2211-2855
Editore:
Elsevier BV
DOI:
10.1016/j.nanoen.2019.02.023
Autori:
Giulia Lucarelli, Thomas M. Brown
Pubblicato in:
Frontiers in Materials, Numero 6, 2019, Pagina/e 1-11, ISSN 2296-8016
Editore:
Frontiers-Media
DOI:
10.3389/fmats.2019.00310
Autori:
Mark V. Khenkin, Eugene A. Katz, Antonio Abate, Giorgio Bardizza, Joseph J. Berry, Christoph Brabec, Francesca Brunetti, Vladimir Bulović, Quinn Burlingame, Aldo Di Carlo, Rongrong Cheacharoen, Yi-Bing Cheng, Alexander Colsmann, Stephane Cros, Konrad Domanski, Michał Dusza, Christopher J. Fell, Stephen R. Forrest, Yulia Galagan, Diego Di Girolamo, Michael Grätzel, Anders Hagfeldt, Elizabeth von
Pubblicato in:
Nature Energy, Numero 5/1, 2020, Pagina/e 35-49, ISSN 2058-7546
Editore:
Springer Nature Limited
DOI:
10.1038/s41560-019-0529-5
Autori:
Babak Taheri, Emanuele Calabrò, Fabio Matteocci, Diego Di Girolamo, Giorgio Cardone, Andrea Liscio, Aldo Di Carlo, Francesca Brunetti
Pubblicato in:
Energy Technology, Numero 8/5, 2020, Pagina/e 1901284, ISSN 2194-4288
Editore:
Wiley
DOI:
10.1002/ente.201901284
Autori:
Lukas Wagner, Patrick Schygulla, Jan Philipp Herterich, Mohamed Elshamy, Dmitry Bogachuk, Salma Zouhair, Simone Mastroianni, Uli Würfel, Yuhang Liu, Shaik M. Zakeeruddin, Michael Grätzel, Andreas Hinsch, Stefan W. Glunz
Pubblicato in:
Matter, Numero 5, 2022, Pagina/e 2352-2364, ISSN 1548-8411
Editore:
Elsevier
DOI:
10.1016/j.matt.2022.05.024
Autori:
Francesca De Rossi, Jérémy Barbé, David M. Tanenbaum, Lucio Cinà, Luigi Angelo Castriotta, Vasil Stoichkov, Zhengfei Wei, Wing Chung Tsoi, Jeffrey Kettle, Artem Sadula, John Chircop, Brian Azzopardi, Haibing Xie, Aldo Di Carlo, Monica Lira-Cantú, Eugene A. Katz, Trystan M. Watson, Francesca Brunetti
Pubblicato in:
Energy Technology, Numero 8/12, 2020, Pagina/e 2000134, ISSN 2194-4288
Editore:
Wiley
DOI:
10.1002/ente.202000134
Autori:
Sergio Castro-Hermosa, Luana Wouk, Izabela Silva Bicalho, Luiza de Queiroz Corrêa, Bas de Jong, Lucio Cinà, Thomas M. Brown, Diego Bagnis
Pubblicato in:
Nano Research, Numero 14/4, 2021, Pagina/e 1034-1042, ISSN 1998-0124
Editore:
Tsinghua Univ Press
DOI:
10.1007/s12274-020-3147-4
Autori:
Dmitry Bogachuk, Lukas Wagner, Simone Mastroianni, Michael Daub, Harald Hillebrecht, Andreas Hinsch
Pubblicato in:
Journal of Materials Chemistry A, Numero 20507488, 2020, Pagina/e 9788-9796, ISSN 2050-7488
Editore:
Royal Society of Chemistry
DOI:
10.1039/d0ta02494e
Autori:
Lucarelli, G., De Rossi, F., Taheri, B., Brown, T.M., Brunetti, F.
Pubblicato in:
Energy Technology, Numero 21944288, 2022, ISSN 2194-4288
Editore:
John Wiley and Sons Inc
DOI:
10.1002/ente.202200314
Autori:
Hobeom Kim, Mingyuan Pei, Yonghui Lee, Albertus A. Sutanto, Sanghyun Paek, Valentin I. E. Queloz, Aron J. Huckaba, Kyung Taek Cho, Hyung Joong Yun, Hoichang Yang, Mohammad Khaja Nazeeruddin
Pubblicato in:
Advanced Functional Materials, Numero 30/19, 2020, Pagina/e 1910620, ISSN 1616-301X
Editore:
John Wiley & Sons Ltd.
DOI:
10.1002/adfm.201910620
Diritti di proprietà intellettuale
Numero candidatura/pubblicazione:
FR
2114208
Data:
2021-12-22
Candidato/i:
COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
Numero candidatura/pubblicazione:
FR
2114208
Data:
2021-12-22
Candidato/i:
ARKEMA FRANCE SA
Numero candidatura/pubblicazione:
P
202230221
Data:
2022-03-16
Candidato/i:
FLEXBRICK SL
È in corso la ricerca di dati su OpenAIRE...
Si è verificato un errore durante la ricerca dei dati su OpenAIRE
Nessun risultato disponibile