Projektbeschreibung
Schnell und willkürlich, stationär oder regulär: neue Herangehensweise an Multiskalenprobleme
Partielle Differentialgleichungen sind von grundlegender Bedeutung, damit wir beschreiben können, wie sich bestimmte Parameter im Vergleich zu anderen ändern. Viele mikroskopische Prozesse, die durch partielle Differentialgleichungen beschrieben werden, wie die Wärmeleitung, Elektrizität und der Magnetismus in heterogenen Materialien, sind mit sich schnell verändernden Koeffizienten verbunden. Mit der Homogenisierungstheorie sollten makroskopische oder „effektive“ Gleichungen für Systeme mit mikroskopisch feinen Strukturen erreicht werden. Die stochastische Homogenisierung geht noch einen Schritt weiter und befasst sich mit Zufallskoeffizienten, die sich schnell verändern. Das EU-finanzierte Projekt QSHvar zielt darauf ab, sich mithilfe neuer Methoden innerhalb der stochastischen Homogenisierung unbeantworteten Fragen in einem wichtigen Bereich der Analysis zu widmen, die auf der Suche nach stationären Werten (z. B. Minima oder Maxima) bestimmter Funktionen ist.
Ziel
The proposal addresses various multiscale problems which lie at the intersection of probability theory and the analysis of partial differential equations and calculus of variations. Most of the proposed problems fit under the framework of stochastic homogenization, that is, the study of large-scale statistical properties of solutions to equations with random coefficients. In the last ten years, there has been significant progress made in developing a quantitative theory of stochastic homogenization, meaning that one can now go beyond limit theorems and prove rates of convergence and error estimates, and in some cases even characterize the fluctuations of the error. These new quantitative methods give us new tools to attack more difficult multi-scale problems that have until now resisted previous approaches, and consequently to solve open problems in the field.
Many of the actual goals of the proposal come from problems in calculus of variations. Apart from qualitative results, many fundamental questions in quantitative theory are completely open, and our recent results suggest a way to tackle these problems. The first one is to prove regularity properties of homogenized Lagrangian under rather general assumptions on functionals, and to solve a counterpart for Hilbert's 19th problem in the context of homogenization. The second project is to attack so-called Faber-Krahn inequality in the heterogeneous case. This is a very involved problem, but again recent development in the theory of homogenization makes the attempt plausible. The final part of the proposal involves new mathematical approaches and subsequent computational research supporting the geothermal power plant project being built by St1 Deep Heat Ltd in Espoo, Finland.
Programm/Programme
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
HAUPTPROGRAMM
Alle im Rahmen dieses Programms finanzierten Projekte anzeigen
Thema/Themen
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Finanzierungsplan
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
ERC-COG - Consolidator Grant
Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen
Aufforderung zur Vorschlagseinreichung
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
(öffnet in neuem Fenster) ERC-2018-COG
Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigenGastgebende Einrichtung
Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.
00014 HELSINGIN YLIOPISTO
Finnland
Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.