Projektbeschreibung
Stabilitätsbedingungen und Wall-Crossing in der algebraischen Geometrie
Das EU-finanzierte Projekt WallCrossAG plant, Stabilitätsbedingungen und Wall-Crossing in abgeleiteten Kategorien als Standardmethode für eine Vielzahl von fundamentalen Problemen der algebraischen Geometrie einzuführen. Frühere Arbeiten zum Thema Wall-Crossing ergaben Durchbrüche in der birationalen Äquivalenz von Modulräumen und verwandten Varietäten. Jüngste Fortschritte haben gezeigt, dass sich die Macht der Stabilitätsbedingungen weit über dieses Umfeld hinaus erstreckt. Die Untersuchung von Verschwindenssätzen oder Schranken auf globalen Abschnitten, Brill-Noether-Problemen oder Modulräumen von Varietäten wird möglich. Das Projekt WallCrossAG wird die Wall-Crossing-Methode weiterentwickeln, um die Green-Vermutung und die Green-Lazarsfeld-Vermutung für alle glatten Kurven zu beweisen. Außerdem sollen Stabilitätsbedingungen im Zusammenhang mit Modulräumen von Garben hochdimensionaler Varietäten und spezieller abelscher Varietäten konstruiert werden.
Ziel
We will establish stability conditions and wall-crossing in derived categories as a standard methodology for a wide range of fundamental problems in algebraic geometry. Previous work based on wall-crossing, in particular my joint work with Macri, has led to breakthroughs on the birational geometry of moduli spaces and related varieties. Recent advances have made clear that the power of stability conditions extends far beyond this setting, allowing us to study vanishing theorems or bounds on global sections, Brill-Noether problems, or moduli spaces of varieties.
The Brill-Noether problem is one of the oldest and most fundamental questions of algebraic geometry, aiming to classify possible degrees and embedding dimensions of embeddings of a given variety into projective spaces. Recent work by myself, a post-doc (Chunyi Li) and a PhD student (Feyzbakhsh) of mine has established wall-crossing as a powerful new method for such questions. We will push this method further, all the way towards a proof of Green's conjecture, and the Green-Lazarsfeld conjecture, for all smooth curves.
We will use similar methods to prove new Bogomolov-Gieseker type inequalities for Chern classes of stable sheaves and complexes on higher-dimensional varieties. In addition to constructing stability conditions on projective threefolds---the biggest open problem within the theory of stability conditions, we will apply them to study moduli spaces of sheaves on higher-dimensional varieties, and to characterise special abelian varieties.
We will use the construction of stability conditions for families of varieties in my current joint work to systematically study the geometry of Fano threefolds and fourfolds, in particular their moduli spaces, by establishing relations between different moduli spaces, and describing their Torelli maps. Finally, we will study rationality questions, with a particular view towards a wall-crossing proof of the irrationality of the very general cubic fourfold.
Schlüsselbegriffe
Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).
Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).
Programm/Programme
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
HAUPTPROGRAMM
Alle im Rahmen dieses Programms finanzierten Projekte anzeigen
Thema/Themen
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Finanzierungsplan
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
ERC-COG - Consolidator Grant
Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen
Aufforderung zur Vorschlagseinreichung
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
(öffnet in neuem Fenster) ERC-2018-COG
Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigenGastgebende Einrichtung
Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.
EH8 9YL Edinburgh
Vereinigtes Königreich
Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.